بسم الله الرحمن الرحيم

ENGINEERING MANAGEMENT

(GE 404)

LECTURE \#12
 Time-Cost Trade-Dffs

Contents

\qquad

- Objectives of the present lecture
- Time-Cost Trade-offs
- Reasons to reduce project duration
- Methods to reduce project duration
- Types of Costs and project time-cost relationship
- Project crashing and cost slope
- Compression or Crashing the project schedule
- Basic steps in project crashing
- Network interaction limit (Nil)
- Network compression algorithm
- Problem
- Further reading

Objectives of the Present lecture

- To discuss project time-cost relationship
- To explain the steps involved in project crashing

Time-Cost Trade-offs (Time-Cost Relationship)

- There is a relationship between a project's time to completion and its cost.
- By understanding the time-cost relationship, one is better able to predict the impact of a schedule change on project cost.
- Time-cost trade-off, in fact, is an important management tool for overcoming one of the critical path method limitations of being unable to bring the project schedule to a specified duration.

Reasons to Reduce Project Durations

- To avoid late penalties
- To realize incentives for timely or early competition of a project
- To beat the competition to the market (influences Bid price)
- To free resources for use on other projects
- To reduce the indirect costs
- To complete a project when weather conditions make it less expensive

Methods to reduce Durations

1. Overtime: Have the existing crew work overtime. This increase the labor costs due to increase pay rate and decrease productivity.
2. Hiring and/or Subcontracting:

Bring in additional workers to enlarge crew size. This increases labor costs due to overcrowding and poor learning curve.

Add subcontracted labor to the activity. This almost always increases the cost of an activity unless the subcontracted labor is far more efficient.
3. Use of advanced technology: Use better/more advanced equipment. This will usually increase costs due to rental and transport fees. If labor costs (per unit) are reduced, this could reduce costs.

Types of Costs

- Direct Costs
- Direct costs are those directly associated with project activities such as cost of labor, equipment and materials, salaries.
- If the duration of activities is decreased in order to decrease project completion time, the direct cost generally increase since more resources must be allocated to accelerate the activity.
- Indirect Costs
- Indirect costs are those overhead costs that are not directly associated with specific project activities such as office space, administrative staff, and taxes.
- Such costs tend to be relatively steady per unit time over the life of the project.
- Total indirect costs increase as the project duration increases.
- Note: Project cost is the sum of the direct and indirect costs.

Project Time-Cost Relationship

Determining project schedule for minimum total cost.

Note: It should never be assumed that the quantity of resources deployed and the task duration are inversely related.
Thus one should never automatically assume that the work that can be done by one man in 16 weeks can actually be done by 16 men in one week.

Project Crashing and Cost Slope

- Shortening the duration of a project is called project crashing
- The minimum possible duration of an activity (which implies maximum cost) is called the Crashed duration and corresponding cost is called Crashed cost
- Thus the crash time is the shortest time in which an activity can be completed
- Duration of an activity which implies minimum direct cost is called the normal duration and corresponding cost is called normal cost
- The slope of the line connecting the normal point (lower point) and the crash point (upper point) is called the cost slope of the activity.
- The slope of this line can be calculated
 mathematically by knowing the coordinates of the normal and crash points.

$$
\text { Cost slope }=\frac{(\text { Crash cost }- \text { Normal cost })}{(\text { Normal duration }- \text { Crash duration })}=\frac{\left(C_{d}-C_{D}\right)}{(D-d)}
$$

Problem-1

Solution

$$
\begin{aligned}
& \begin{aligned}
\text { Cost slope } & =\frac{(\text { Crash cost }- \text { Normal cost })}{(\text { Normal duration }- \text { Crash duration })}=\frac{\left(C_{d}-C_{D}\right)}{(D-d)} \\
& =\frac{(\$ 34,000-\$ 30,000)}{(3-1)}=\$ 2,000 / \text { Week }
\end{aligned} \\
& \Rightarrow \text { Crash cost } / \text { week }=\text { Cost slope }=\$ 2,000 / \text { Week Ans. }
\end{aligned}
$$

Compressing or Crashing the Project-Schedule

- Compressing or Crashing the project schedule refers to the acceleration of the project activities in order to complete the project sooner.
- The time required to complete a project is determined by the critical path, so to compress a project schedule one must focus on critical path activities.

Basic Steps in Project Crashing

1. Compute the crash cost per time period
2. Using current activity times, find the critical path and identify the critical activities
3. If there is only one critical path, then select the activity on this critical path that (a) can still be crashed, and (b) has the smallest crash cost per period.
4. If there is more than one critical path, then select one activity from each critical path such that (a) each selected activity can still be crashed, and (b) the total crash cost of all selected activities is the smallest.
5. Note that the same activity may be common to more than one critical path.
6. Update all activity times. If the desired due date has been reached, stop. If not, return to Step 2.

Problem-2

For the small project shown in the table, it is required reduce the project duration by (i) 2 periods.
(ii) 5 periods.

Activity	Precedence	Normal		Crash	
		Time, day	Cost, \$	Time, day	Cost, \$
A	-	4	210	3	280
B	-	8	400	6	560
C	A	6	500	4	600
D	A	9	540	7	600
E	B,C	4	500	1	1100
F	C	5	150	4	240
G	E	3	150	3	150
H	D,F	7	600	6	750

Solution Step 1: Develop Network

Step 2:Calculate Times and Find CP

Step 3: Calculate Cost Slope

Activity	Precedence	Normal			Crash	
		Time, day	Cost, $\$$	Time, day	Cost, \$	Cost Spe, \$/day
A	-	4	210	3	280	70
B	-	8	400	6	560	80
C	A	6	500	4	600	50
D	A	9	540	7	600	30
E	B,C	4	500	1	1100	200
F	C	5	150	4	240	90
G	E	3	150	3	150	$* *$
H	D,F	7	600	6	750	150

Note:
1- G can not expedite
2- Among the critical activities the lowest slope is for activity C , so it can be expedited on

Step 4(a): Reduce 2 periods of activity C Solution-(i)

Activity	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}		
Total float	0	5	0	0	5	0	5	0		
Free float	0	0	0	0	0	0	5	0	$. \quad$	Project completion time $=20$ working days
:---										
Critical Path: $\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{F}, \boldsymbol{H} . \& A, \boldsymbol{D}, \boldsymbol{H}$										

Step 4(b): Reduce 1 period of activity A

- Project completion time $=19$ working days
- Critical Path: A, C, F, H. \& A, D, H

Activity	A	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}
Total float	0	4	0	0	5	0	5	0
Free float	0	0	0	0	0	0	5	0

Step 4(c): Reduce 1 period of 2 activities (D,F)

- Project completion time $=18$ working days
- Critical Path: A, C, F, H. \& A, D, H

Activity	A	\mathbf{B}	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}
Total float	0	3	0	0	4	0	4	0
Free float	0	0	0	0	0	0	4	0

Step 4(d): Reduce 1 period of activity H

$>$ Project completion time $=17$ working days
$>$ Critical Path: $A, C, F, H . \& A, D, H$

Activity	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}
Total float	0	2	0	0	3	0	3	0
Free float	0	0	0	0	0	0	3	0

Step 5: Solution (ii)

Network Interaction Limit (Nil)

$\{$ Crash limit
$\mathrm{Nil}=\operatorname{Min}\{$ Free Float of any of the non critical activities in the parallel paths competing for critical path

Network Compression Algorithm

24

1. Determine normal project duration, cost and Critical Path
2. Compute the cost slope and shorten the Critical Activities beginning with the activity having the lowest cost-slope
3. Determine the compression limit (Nil), organize the data in the tabular form and update the project network
4. When a new Critical path is formed:

Shorten the combination of activity which Falls on both Critical Paths, OR
Shorten one activity from each of the critical paths. Use the combined cost of shortening both activities when determining if it is cost effective to shorten the project.
5. At each shortening cycle, compute the new project duration and project cost
6. Continue until no further shortening is possible
7. Tabulate and Plot the Indirect project Cost on the same time-cost graph; and add direct and indirect cost to find the project cost at each duration
8. Use the total project cost-time curve to find the optimum time

Note

(25)

For large network, use criticality theorem to eliminate the noncritical paths that do not need to be crashed.

Eliminate Activities with having TF > the required project reduction time.

Problem-3

The durations and direct costs for each activity in the network of a small construction contract under both normal and crash conditions are given below. Establish the least cost for expediting the contract. Determine the optimum duration of the contract assuming the indirect cost amounts SR 125/week.

Activity	Preceded by	Normal		Crash	
		Duration (weeks)	Cost (SR)	Duration (weeks)	Cost (SR)
A	-	12	7000	10	7200
B	A	8	5000	6	5300
C	A	15	4000	12	4600
D	B	23	5000	23	5000
E	B	5	1000	4	1050
F	C	5	3000	4	3300
G	E,C	20	6000	15	6300
H	F	13	2500	11	2580
I	D, G, H	12	3000	10	3150

Solution

Cycle \#1

We have one critical path, A-C-G- I. Either crash A at cost SR 100/week or crash C at cost SR 200/week or crash G at cost SR 60/week or crash I at cost SR 75/week.

Cycle \#	Activity to Shorten	Can Be Shortened	Nil	Weeks Shortened	Cost per Week	Cost for Cycle	Total Cost	Project Duration
0	-	-	-	-	-	-	36,500	59
1	G	5	2	2	60	120	36,620	57

Now we have two critical paths: A-C-F-H-I and A-C-G-I.

Cycle \#2

Either crash A at cost SR 100/week or crash C at cost SR 200/week or
crash I at cost SR 75/week or
crash F and G at cost SR 360/week or crash H and G at cost SR 100/week.

Cycle \#	Activity to Shorten	Can Be Shortened	Nil	Weeks Shortened	$\begin{aligned} & \text { Cost } \\ & \text { per } \\ & \text { Week } \end{aligned}$	Cost for Cycle	Total Cost	Project Duration
0	-	-	-	-	-	-	36,500	59
1	G	5	2	2	60	120	36,620	57
2	I	2	-	2	75	150	36,770	55

Cycle \#3

Now we have two critical paths:

 A-C-F-H-I and A-C-G- I.Either crash A at cost SR 100/week or crash C at cost SR 200/week or

Crash limit

Cycle \#	$\begin{aligned} & \text { Activity } \\ & \text { to } \\ & \text { Shorten } \end{aligned}$	Can Be Shortened	Nil	Weeks Shortened		Cost for Cycle	Total Cost	Project Duration
0	-	-	-	-	-	-	36,500	59
1	G	5	2	2	60	120	36,620	57
2	I	2	-	2	75	150	36,770	55
3	A	2	-	2	100	200	36,970	53

Cycle \#4

Cycle \#	Activity to Shorten	Can Be Shortened	Nil	Weeks Shortened	$\begin{gathered} \text { Cost } \\ \text { per } \\ \text { Week } \end{gathered}$	Cost for Cycle	Total Cost	Project Duration
0	-	-	-	-	-	-	36,500	59
1	G	5	2	2	60	120	36,620	57
2	I	2	-	2	75	150	36,770	55
3	A	2	-	2	100	200	36,970	53
4	H, G	2	2	2	$60+40$	200	37,170	51

Now we have three critical paths;
Cycle \#5 A-C-F-H-I, A-C-C-I, and A-B-D-I. Either crash C and B at cost SR 350/wk or crash F, G and B at cost SR 510/wk.

ES	D	EF
Activity		
LS	TF	LF
Crash limit		

Cycle \#	Activity to Shorten	Can Be Shortened	Nil	Weeks Shortened	Cost per Week	Cost for Cycle	Total Cost	Project Duration
0	-	-	-	-	-	-	36,500	59
1	G	5	2	2	60	120	36,620	57
2	I	2	-	2	75	150	36,770	55
3	A	2	-	2	100	200	36,970	53
4	G, H	2	2	2	60+40	200	37,170	51
5	B, C	2	-	2	$150+200$	700	37,870	49

Final Results

Cycle \#		Project Duration		Direct Cost
Indirect Cost	Total Cost			
$\mathbf{0}$	59	36500	7375	43875
$\mathbf{1}$	57	36620	7125	43745
$\mathbf{2}$	55	36770	6875	43645
$\mathbf{3}$	53	36970	6625	43595
$\mathbf{4}$	51	37170	6375	43545
$\mathbf{5}$	49	37870	6125	43995

Project Optimal Duration

Home Work

Data on small maintenance project is given as below: On completion, the project will give a return of SR110/day. Using time-cost trade-off method, how much would you like to compress the project for maximizing the return (ignore the Indirect cost effect)? Show all calculations.

Activity	Depends	Normal		Crash	
On	Time	Cost	Time	Cost	
A	-	6 days	SR700	4 days	SR800
B	-	4 days	400	4 days	400
C	-	5 days	650	4 days	700
D	A	8 days	625	5 days	700
E	B	10 days	200	7 days	350
F	B	7 days	500	5 days	700
G	C	3 days	600	3 days	600
H	D, E	6 days	300	5 days	400
I	F, G	7 days	350	4 days	425

Hint: If the project is compressed by n days, the return amount will be $n * 110$ and total cost after compressing by n days will be obtained by the routine procedure. That n has to be searched which makes the difference of the above two costs maximum.

Further Reading

Read more about the Time-Cost Trade-offs from:

Jimmie W. Hinze. "Construction Planning and Management," Fourth Edition, 2012, Pearson.

Thank You

(36)

Questions Please

