بسم الله الرحمن الرحيم

ENGINEERING MANAGEMENT

(GE 404)

Contents

- Objectives of the present lecture
- Introduction to Project time-control
- Process of Project time-control
- Network updating (rescheduling)
- Problem
- Further reading

Objectives of the Present lecture

- To discuss process involved in project timecontrol
- To explain how to carry out project rescheduling (or Network updating)

Project Time-Control

- Project time-control can be reduced to two basic components:

1. Monitoring

- Monitoring consists of a means of understanding what is happening on a project, obtaining information about the project by some means

2. Control

Control consists of action taken in response to the information

Process of Project Time-Control

- Establish an operational schedule
- Measure the progress and report the progress
- Compare actual achievement with planned
- Check and analyze time progress and determine effect on completion date and milestones
- Plan for corrective action
- Implement corrective action
- Update operational schedule

Establish Operational Schedule

- For project control purposes a hierarchy of schedules may be needed, depending on who will use it
- Key Dates Schedule
- For owners and top-level management in terms of MILESTONES or KEY DATES.
- Detailed Schedule
- For engineers, work supervisors, material suppliers and subcontractors
- A schedule of that particular engineer/supervisor work responsibility
- Provide him with a day-to-day forecast of field operations
- Critical activities and free float values should be noted
- Covers limited time spans (2 weeks or 30 days)
- Tabular listings and computer-printed bar charts are common forms

Measure and Report Progress

Methods:

- Estimated number of working days required to complete the activity
- Estimated \% completion of the activity
- Quantities of work units put in place

Equations

- Based on the assumption of straight-line variation between time and work accomplishment
- Working days to complete $=\mathrm{d}(1-\mathrm{P} / 100)$
- Working days to complete $=\mathrm{d}(1-(\mathrm{W} / \mathrm{T}))$
$\mathrm{d}=$ total activity duration in working days
$\mathrm{P}=$ estimated percentage of completion
$\mathrm{W}=$ number of work units put into place
$\mathrm{T}=$ total number of work units associated with the activity

Contd.

- Weekly Progress reports
- A common procedure in many industries
- Listing those activities that started, finished, or were in progress during the week and indicating their stages of completion
- Must include procurement, material delivery information etc.
- Chose a cutoff date, to be selected to serve both time management and labor cost accounting

Contd.

WEEKLY PROGRESS REPORT

Project: Highway bridge
Job. No: 7903-50

Activity	Activity Number	Date Started	Date Completed	Percent Complete	Working days to complete
A	110	-	July 15	$\mathbf{1 0 0}$	$\mathbf{0}$
B	115	-	-	-	$\mathbf{1 3}$
C	130	-	-	$\mathbf{8 0}$	$\mathbf{2}$
D	150	July 15	July15	$\mathbf{1 0 0}$	$\mathbf{0}$
E	160	July 16	July 21	$\mathbf{1 0 0}$	$\mathbf{0}$

Contd.

Field Progress Narrative

- To accompany weekly progress reporting
- Discussion of projected project features
- General statement about time status
- Critical or low float activities in difficulty
- Potential trouble spots
- Exceptionally well project areas

Compare and Analysis of Project Progress

- Concerned primarily with determining the effect of the latest information on the project completion date and any milestone goals
$\underline{1^{\text {st }}-A \text { quick and simple check for critical activities status }}$
$\underline{2 n d}^{\text {nd }}$ Check the possibility of a new critical path

Signs of Danger

- Activities fall behind LS schedule
- Resource availability delays
- Realizing that time duration of future activities have been materially underestimated
- Change logic becomes necessary

Corrective Actions

(12

- When there are small delays that are within network time contingency, no action is usually required
- Otherwise use Time Reduction Technique to bring project back on schedule
- Make periodic (Weekly, biweekly, or monthly) job progress meetings with project managers, field supervisors, major subcontractors, material suppliers, and owner representative to enhance time management efficiency

Network Updating (Rescheduling)

13

- Concerned with determining the effect of schedule deviations and plan changes on the portions of the project yet to be constructed
- This requires making necessary network corrections and re-computing activity times and float times
- Information required for Rescheduling
- New activities to be added
- Existing activities to be deleted
- Changes in the resource availability and delivery dates
- Changes in the job logic
- New estimate of the time (for completing unfinished activities)
- Changes in the scope of work etc.

Problem-1

14

The initial AON diagram for a small engineering proct is shown below with its planned activity times in days. At the end of the $\mathbf{1 5}{ }^{\text {th }}$ day, the field progress report gives you the following information:

- Activity "A" was completed on schedule
- Activity "B" started as planned but four days were lost due to waiting for the required resources
- Activity "C" was completed one day earlier
- The remaining duration of Activity "D" is 2 days
- The duration of activity "H" will be reduced to 12 days instead of 17 days.
- The activity " F " cannot start until the morning of day 22
- Activity " Z " is expected to take two days more
- Due to owner requirement the volume of work of activity " X " will be increased by 50%

Construct the updated AON diagram, calculate the early and late start times of each activity, and indicate the critical path.

Solution

Note: In duration cell, mention the time required/ remained w.r.t. date of reporting.
Note: ES of Activity E and D should be 15 since work in progress in these two activities For activity E: 13-5-18 is changed to 15-3-18

- ES is changed from 13 to 15 because the current date of rescheduling is Day 15
- Duration is changed from 5 to 3 because $\mathrm{EF}=18$ has to be maintained

Further Reading

Read more about the Project Monitoring and Control from:

Jimmie W. Hinze. "Construction Planning and Management," Fourth Edition, 2012, Pearson.

Thank You

(I)

Questions Please

