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Abstract: We offer a wavelet collocation method for solving the weakly singular integro-differential
equations with fractional derivatives (WSIDE). Our approach is based on the reduction of the desired
equation to the corresponding Volterra integral equation. The Müntz–Legendre (ML) wavelet is
introduced, and a fractional integration operational matrix is constructed for it. The obtained integral
equation is reduced to a system of nonlinear algebraic equations using the collocation method and the
operational matrix of fractional integration. The presented method’s error bound is investigated, and
some numerical simulations demonstrate the efficiency and accuracy of the method. According to the
obtained results, the presented method solves this type of equation well and gives significant results.

Keywords: Müntz–Legendre wavelets; wavelet collocation method; weakly singular integral equation;
fractional differential equation

1. Introduction

The wavelet collocation approach is employed in this study to solve WSIDE [1]

CDβ1
0 u(x) =

∫ x

0
(x− t)β2−1u(t)dt + g(x)u(x) + f (x), β1, β2 ∈ R+, x ∈ [0, 1], (1)

with initial condition
u(κ)(0) = ηκ , κ = 0, 1, . . . , n1 − 1, (2)

where cDβ1
0 specifies the Caputo fractional derivative (CFD) defined by

cDβ1
0 (u)(x) :=

1
Γ(n1 − β1)

∫ x

0

u(n)(t)dt
(x− t)β1−n1+1 , (3)

and ni = βi for βi ∈ N, and [βi] + 1 := ni ∈ N, for βi 6∈ N (i = 1, 2). The functions f and g
are considered to be sufficiently smooth functions on the interval [0, 1].

Various physical phenomena can be modeled using fractional integro-differential
equations (FIDEs), such as the epidemic process [2], viscoelasticity [3] and glass-forming
process [4]. Some papers have explored numerical methods for solving equations of this
type, and we mention a few of them. In [5], FIDEs are solved using a fractional differential
transform scheme. In [6], the authors employed the Adomian decomposition scheme to
solve FIDEs. Then, Momani et al. [7] applied this method for solving systems of FIDEs.
To solve Equation (1), Zhao et al. [1] used a collocation approach based on a piecewise
polynomial. Rawashdeh [8] applied the collocation method using Spline functions to solve
the problem (1) and (2).
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In recent years, fractional derivatives instead of positive integer derivatives have been
used to modeling of physical phenomena. These types of equations have gained a special
place for themselves, and many researchers are looking into how to model phenomena with
these types of derivatives, as well as how to solve them. Meanwhile, some applications of
these equations can be mentioned such as dynamics of interfaces between substrates and
nanoparticles [9], colored noise [10], bioengineering [11], fluid-dynamic traffic model [12],
solid mechanics [13], earthquakes [14], anomalous transport [15], continua and statistical
mechanics [16], economics [17]. There are some analytical methods to solve these types of
equations [18–20]. But, when the equations become more complicated, these methods no
longer work. So, numerical approaches can address this shortage. Here, we mention some
of these methods, including the finite difference method [21], collocation method [22–25],
Galerkin method [26–28], finite element method [29], integral transform method [30], etc.

In recent years, among the existing bases, wavelets have played an essential role in
solving various equations and representing differential and integral operators [31]. In
the numerical solution of equations, two forms of wavelets are utilized, which are scalar
wavelets and multi-wavelets. Multi-wavelets, including the Müntz–Legendre wavelets,
use multi-generators instead of a single-generator in the multiresolution analysis [32].
For this reason, they do not have some of the disadvantages of scalar wavelets. One of
the most famous multi-wavelets are Alpert multi-wavelets, which have many applications
in numerical solution and image processing [31,33–35]. The Müntz wavelets are another
instance of multi-wavelets that have recently been used in some numerical work, such
as solving fractional optimal control problems [36], multi-order fractional differential
equations [37], and pantograph equations with fractional derivatives [38].

As we are aware, the singularity and existing fractional derivatives in equations are
two very important challenges in solving these types of equations. Another challenge is the
existence of a non-smooth solution for these equations near the boundaries, which many
numerical methods fail to overcome. In this study, we apply the Müntz–Legendre wavelets
collocation method with various choices of collocation points, including Chebyshev and
Legendre nodes, as well as uniform grids to overcome such challenges. Because of the
concentration of Chebyshev nodes in the boundaries (this is a common choice for solving
the singular integrals, too) and the properties of the Müntz–Legendre wavelets, we expect
our presented method to work well. Example 4 shows that the present method can solve
problems where the exact solution is non-smooth near the origin.

The structure of this paper is as follows: We introduce the Müntz–Legendre wavelets
and their properties in Section 2. The wavelet collocation method is implemented to solve
WSIDE in Section 3. An error-bound investigation is also surveyed in this section. Section 4
is about some numerical experiments that show how accurate and useful the method is.

2. Müntz–Legendre Wavelets

Assume that Sl(L) := span{xη0 , xη1 , . . . , xηl} for each l where L = {0 = η0 < η1 <
. . .} is an increasing sequence. Motivated by [39], we introduce the space S(L), which is
spanned by {xηl}∞

l=0 as

S(L) :=
∞⋃

l=0

Sn(L) = span{xηl , l = 0, 1, . . .}, x ∈ (0, 1). (4)

This space is dense in C[0, 1]. S. N. Bernstein, a Russian mathematician, demonstrated
explicitly that the sufficient and necessary criteria for having S(L) = C[0, 1] are

∑
ηk>0

1 + log ηk
ηk

= ∞, (5)
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and
lim
k→∞

ηk
k log k

= 0, (6)

respectively. He also proposed that

∞

∑
k=1

1
ηk

= ∞, (7)

is a necessary and sufficient condition for L = {0 = η0 < η1 < . . .} to exist.
Müntz, however, verified this conjecture two years later [40]. It may be demonstrated

that the same holds true for L2(0, 1) [41]. It should be noted that the functions {xηl}∞
l=0 are

not appropriate as bases. Thus, in the subsequent part, the Müntz–Legendre (ML) functions
will be described in a way that makes them straightforward to evaluate and orthogonal.

The ML polynomials are specified as follows [41,42]:

Ll(x;L) :=
1

2πi

∫
χ

l−1

∏
k=1

t + ηk + 1
t− ηk

xt

t− ηl
dt, (8)

where χ is a simple contour that encircles all zeros in the integrand’s denominator. Here is
another representation for these functions. Given ηn := {nν : ν ∈ R, n = 0, . . . l}, let the
coefficient cn,l be calculated by

cn,l :=
∏l−1

i=0(ηn + ηi + 1)

∏l
i=0,i 6=n(ηn − ηi)

. (9)

Using these coefficients, we can state the ML polynomials as follows.

Ll(x;L) =
l

∑
n=0

cn,l xηn , x ∈ [0, 1]. (10)

It is possible to demonstrate that the ML polynomials constitute an orthogonal func-
tion system in the sense of C[0, 1] and L2(0, 1). In the following, for simplicity, we put
Ll(x) := Ll(x;L).

Given s ∈ N0 and r ∈ N, we consider a subspace of L2([0, 1]) as follows

As = span{φl
s,b : b ∈ B, l ∈ R}, (11)

where B := {0, 1, . . . , 2s − 1}, R := {0, 1, . . . , r− 1}, and the dilatation and translation of
φl result in φl

s,b. In addition, the parameters r and s are referred to as the multiplicity and
refinement level, respectively.

The ML wavelets are introduced in [37], and are determined by

φn
s,b =

{
2s/2√2ηn + 1Ln(2sx− b), b

2s ≤ x ≤ b+1
2s ,

0, otherwise.
(12)

To map a function u ∈ L2[0, 1] onto As, we provide the following projection operator
Ps, i.e.,

u(x) ≈ Ps(u)(x) =
2s−1

∑
b=0

r−1

∑
l=0

ub,lφ
l
s,b(x) = UTΦ(x) ∈ As, (13)

where the (br + l + 1)-th element of N = 2sr dimensional vector function Φ(x) is φl
s,b(x).
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To assess the coefficients ub,l , one has

ub,l = 〈u, φl
s,b〉 =

∫ 1

0
u(x)φl

s,b(x)dx. (14)

The approximation (13), can be bounded [36].

Lemma 1 ([36]). Given r > m, assume that u ∈ Hm[0, 1], then we have

‖u−Ps(u)‖2 ≤ c(r− 1)−m(2s−1)−m‖u(m)‖2, (15)

and when J ≥ 1, we obtain

‖u−Ps(u)‖H J([0,1]) ≤ c(2s−1)J−m(r− 1)2J− 1
2−m‖u(m)‖2, (16)

where Hm([0, 1]) indicates the Sobolev space and its associated norm is specified by

‖u‖Hm([0,1]) =

(
m

∑
j=0
‖u(j)‖2

2

)1/2

. (17)

Operational Matrix of Fractional Integration

We begin this section with the definition of Riemann–Liouville (RL) fractional integra-
tion (FI). From here on, we use β for both β1 and β2 unless specifically noted.

Definition 1. Given β ∈ R+, the RL-FI operator Iβ
0 of order β is specified by

Iβ
0 (u)(x) :=

1
Γ(β)

∫ x

0
(x− z)β−1u(z)dz, x ∈ [a, b], (18)

in which Γ(β) indicates the Gamma function.

To give rise to a matrix representation for the FI of ML wavelets, it is straightforward
to approximate the effect of the operator Iβ

0 on the vector function Φ(x) via the projection
Ps as

Ps(Iβ
0 )(Φ(x)) ≈ IβΦ(x), (19)

in which Iβ is called the RL-FI operational matrix. Before obtaining the elements of the ma-
trix Iβ for ML wavelets, the piecewise fractional-order Taylor functions must be introduced.
These functions are determined by

υl
s,b =

{
xηl , b

2s ≤ x ≤ b+1
2s ,

0, otherwise,
b ∈ B, l ∈ R, s ∈ N0. (20)

Owing to this introduction of function υl
s,b and vector function Φ(x), one can find a

closed relationship between these functions, viz.

Φ(x) = V−1Υ(x), (21)

where υl
s,b is (br + l + 1)-th element of the vector function Υ(x), and V is an square matrix

of order N with elements

Vi,j = 〈Φi(x), Υj(x)〉 =
∫ 1

0
Υj(x)Φi(x)dx, i, j = 1, . . . , N. (22)
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Now, setting the r-dimension vector W with the i-th element xηi , it is simple in order
to demonstrate that

Υ(x) = [W, . . . , W]T . (23)

Due to Definition 1, it is easy to verify that

Iβ
0 (xγ) =

Γ(γ + 1)
Γ(γ + β + 1)

xγ+β. (24)

Thus, one can verify that

Iβ
0 (Υi)(x) =

Γ(ηi + 1)
Γ(ηi + β + 1)

xηi+β, i = 1, 2, . . . , N. (25)

It follows from (25) that there exists a matrix IΥ,β(x) that satisfies

Iβ
0 (Υ)(x) = IΥ,β(x)Υ(x). (26)

Setting Eβ(x) := xβB (Iβ
0 (W)(x) = Eβ(x)W(x)), where B is a diagonal matrix whose

elements are
(B)i,i = (Γ(ηi + 1))(Γ(ηi + β + 1))−1, (27)

the matrix IΥ,β(x) can be obtained as

IΥ,β(x) = diag
[
Eβ(x), . . . , Eβ(x)

]
. (28)

We can now derive the FI operational matrix for ML wavelets.

Ps(Iβ
0 )(Φ(x)) = Ps(Iβ

0 )(V
−1Υ(x))

= V−1 IΥ,β(x)Υ(x)

= V−1 IΥ,β(x)VΦ(x). (29)

Thus, we obtain
Iβ(x) := V−1 IΥ,β(x)V. (30)

3. Wavelet Collocation Method

This section is dedicated to developing an algorithm based on the collocation method
using the well-known ML wavelets for solving the WSIDE (1). To implement the collocation
method, using the operator Ps, we can expand the unknown solution u(x) based on ML
wavelets, viz.,

u(x) ≈ Ps(u)(x) = UTΦ(x) := uN(x). (31)

where the N-dimensional vector U contains the unknowns, which should be specified. It is
straightforward enough to prove that the function u(x) is a WSIDE (1) solution if and only
if it satisfies the integral equation

u(x)− u0(x) = Iβ1
0 (gu)(x) + Γ(β2)I

β1+β2
0 (u)(x) + Iβ1

0 ( f )(x), (32)

where

u0(x) =
n1−1

∑
κ=0

u(κ)(0)
κ!

xκ .
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Inserting uN(x) into Equation (32), we obtain

uN(x)− u0(x) = Iβ1
0 (guN)(x) + Γ(β2)I

β1+β2
0 (uN)(x) + Iβ1

0 ( f )(x). (33)

By approximating the functions u0(x), guN(x) and f (x) using the projection operator
Ps, we have

u0(x) ≈ Ps(u0)(x) = UT
0 Φ(x),

guN(x) ≈ Ps(guN)(x) = UTGΦ(x),

f (x) ≈ Ps( f )(x) = FTΦ(x). (34)

Using (31) and the matrix Iβ, we can write

Iβ1
0 (guN)(x) ≈Ps(Iβ1

0 (PS)(guN))(x) = UTGIβ1 Φ(x),

Iβ1+β2
0 (u)(x) ≈PS(I

β1+β2
0 (u))(x) = UT Iβ1+β2 Φ(x),

Iβ1
0 ( f )(x) ≈PS(I

β1
0 (PS)( f ))(x) = FT Iβ1 Φ(x). (35)

Inserting Equations (35) into (33), one can introduce the residual as

R(x) =
(

UT(I − GIβ1 − Iβ1+β2)−UT
0 − FT Iβ1

)
Φ(x). (36)

Our goal is to minimize the residual function R(x) to zero. We generate a system
of nonlinear algebraic equations by selecting the collocation points {xi}N

i=1 ∈ [0, 1] that
satisfy R(xi) = 0. We can determine the unknown coefficients U after solving this system.
The collocation points in our study are uniformly spaced meshes or the roots of shifted
Chebyshev and Legendre polynomials. To solve the aforementioned nonlinear system, we
use the Newton method. It is worth noting that Newton’s method is implemented with
starting point U = O (null vector) and the termination criterion is selected to be absolute
residual which is less than the given tolerance 10−16.

In a more abstract form, there is a projection operator QN such that it maps C([0, 1])
onto AJ . On the other hand, given u ∈ C([0, 1]), the projection QN(u) is an element of AJ
that interpolates u at the points {xi}N

i=1 ∈ [0, 1]. Note that QN R = 0 if and only if R(xi) = 0
for {xi}N

i=1 ∈ [0, 1]. Considering this preface, the condition R(xi) = 0 can be written as

QN R = 0. (37)

Equivalently, we have

QN

((
UT(I − GIβ1 − Iβ1+β2)

)
Φ(x)

)
= QN

(
UT

0 + FT Iβ1

)
Φ(x). (38)

Error Analysis

It is possible to demonstrate that Iβ
0 is bounded. The following lemma can be helpful

in obtaining this bound.

Lemma 2 ([43]). There is an estimation of the bound of the FI operator Iβ
0 in Lq([0, 1]), viz.

‖Iβ
0 (u)‖q ≤

1
Γ(β + 1)

‖u‖q, 1 ≤ q ≤ ∞. (39)
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Theorem 1. Let βi ∈ R+ and N 3 ni = −[−β] for i = 1, 2. Furthermore, assume that the
functions u0, g, and f are sufficiently smooth functions on [0, 1] in Equation (1). Thus, the error
bound for desired equation based on the ML wavelets collocation method is obtained by

‖u− uN‖ ≤ CM(r− 1)−m(2J−1)−m +
1

(N + 1)!
‖R(N+1)‖, (40)

where uN is the approximate solution and C and M are constants.

Proof. Subtracting (38) from (32), we obtain

u(x)−QN(uN)(x) = u0(x)−QN(Ps(u0))(x) + Iβ1
0 (gu)(x)−QN(Ps(Iβ1

0 (Ps(gu))))(x)

+ Γ(β2)I
β1+β2
0 (u)(x)− Γ(β2)QN(Ps(Iβ1+β2

0 (uN))(x))

+ Iβ1
0 ( f )(x)−QN(I

β1
0 (Ps( f )))(x), (41)

Given eN = u − uN , by adding and subtracting several terms and simplifying by
considering Es := I −Ps for the pair of terms in Equation (41), we have

1.

u(x)−QN(uN)(x) = u(x)− uN(x) + uN(x)−QN(uN)(x)

= eN(x) + (I −QN)(uN)(x), (42)

2.

u0(x)−QN(Ps(u0))(x) = u0(x)−Ps(u0)(x) + Ps(u0)(x)−QN(Ps(u0)(x))

= Es(u0)(x) + (I −QN)(Ps(u0))(x), (43)

3.

Iβ1
0 (gu)(x)−QN(Ps(Iβ1

0 (Ps(gu))))(x) = Iβ1
0 (gu)(x)− Iβ1

0 (guN)(x)

+ Iβ1
0 (guN)(x)− Iβ1

0 (Ps(guN))(x) + Iβ1
0 (Ps(guN))(x)

−Ps(Iβ1
0 (Ps(guN)))(x) + (I −QN)Ps(Iβ1

0 (Ps(guN)))(x)

= Iβ1
0 (geN)(x) + Iβ1

0 (Es(guN))(x)

+ Es(Iβ1
0 (Ps(guN)))(x) + (I −QN)Ps(Iβ1

0 (Ps(guN)))(x), (44)

4.

Iβ1+β2
0 (u)(x)−QN(Ps(Iβ1+β2

0 (uN))(x)) = Iβ1+β2
0 (u)(x)− Iβ1+β2

0 (uN)(x)

+ Iβ1+β2
0 (uN)(x)−Ps(Iβ1+β2

0 (uN))(x) + (I −QN)(Ps(Iβ1+β2
0 (uN)))(x)

= Iβ1+β2
0 (eN)(x) + Es(Iβ1+β2

0 (uN))(x)

+ (I −QN)(Ps(Iβ1+β2
0 (uN)))(x), (45)

5.

Iβ1
0 ( f )(x)−QN(I

β1
0 (Ps( f )))(x) = Iβ1

0 ( f −Ps( f ))(x) + Iβ1
0 (Ps( f ))(x)

−Ps(Iβ1
0 (Ps( f )))(x) + (I −QN)(Ps(Iβ1

0 (Ps( f ))))(x)

= Iβ1
0 (Es( f ))(x) + Es(Iβ1

0 (Ps( f )))(x)

+ (I −QN)(Ps(Iβ1
0 (Ps( f ))))(x). (46)
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Now, referring to Equation (41) and using Equations (42)–(46), we have

eN(x) + (I −QN)(uN)(x) = Es(u0)(x) + (I −QN)(Ps(u0))(x)

+ Iβ1
0 (geN)(x) + Iβ1

0 (Es(guN))(x)

+ Es(Iβ1
0 (Ps(guN)))(x) + (I −QN)Ps(Iβ1

0 (Ps(guN)))(x)

+ Iβ1+β2
0 (eN)(x) + Es(Iβ1+β2

0 (uN))(x)

+ (I −QN)(Ps(Iβ1+β2
0 (uN)))(x)

Iβ1
0 (Es( f ))(x) + Es(Iβ1

0 (Ps( f )))(x)

+ (I −QN)(Ps(Iβ1
0 (Ps( f ))))(x).

Given

R(x) = uN(x)−Ps(u0)(x)−Ps(Iβ1
0 (Ps(guN)))(x)−Ps(Iβ1+β2

0 (uN))(x)

−Ps(Iβ1
0 (Ps( f )))(x), (47)

some simplification gives rise to obtain

eN(x) = Es(u0)(x) + Iβ1
0 (geN)(x) + Iβ1

0 (Es(guN))(x)

+ Es(Iβ1
0 (Ps(guN)))(x) + Γ(β2)I

β1+β2
0 (eN)(x) + Γ(β2)Es(Iβ1+β2

0 (uN))(x)

+ Iβ1
0 (Es( f ))(x) + Es(Iβ1

0 (Ps( f )))(x) + (I −QN)(R)(x). (48)

Taking the norm from both sides of (49), we obtain

‖eN(x)‖ ≤ ‖Es(u0)(x)‖+ ‖Iβ1
0 (geN)(x)‖+ ‖Iβ1

0 (Es(guN))(x)‖

+ ‖Es(Iβ1
0 (Ps(guN)))(x)‖+ Γ(β2)‖I

β1+β2
0 (eN)(x)‖

+ Γ(β2)‖Es(Iβ1+β2
0 (uN))(x)‖+ ‖Iβ1

0 (Es( f ))(x)‖

+ ‖Es(Iβ1
0 (Ps( f )))(x)‖+ ‖(I −QN)(R)(x)‖, (49)

where the triangle inequality is used. Considering each norm in (49) and using Lemmas 1
and 2, the following inequalities can be obtained:

‖Es(u0)(x)‖ ≤ c(r− 1)−m(2s−1)−m‖u(m)
0 ‖,

‖Iβ1
0 (geN)(x)‖ ≤ 1

Γ(β1 + 1)
‖geN‖ ≤

M1

Γ(β1 + 1)
‖eN‖, (M1 = max

x∈[0,1]
|g(x)|),

‖Iβ1
0 (Es(guN))(x)‖ ≤ 1

Γ(β1 + 1)
‖Es(guN)(x)‖

≤ c
β1 + 1

(r− 1)−m(2s−1)−m‖(guN)
(m)‖
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‖Es(Iβ1
0 (Ps(guN)))(x)‖ ≤ c(r− 1)−m(2s−1)−m‖DmIβ1

0 (Ps(guN))‖,

‖Iβ1+β2
0 (eN)(x)‖ ≤ Γ(β2)

Γ(β1 + β2 + 1)
‖eN‖,

‖Es(Iβ1+β2
0 (uN))(x)‖ ≤ cΓ(β2)(r− 1)−m(2s−1)−m‖DmIβ1+β2

0 (uN)‖,

‖Iβ1
0 (Es( f ))(x)‖ ≤ 1

Γ(β1 + 1)
‖Es( f )‖

≤ c
Γ(β1 + 1)

(r− 1)−m(2s−1)−m‖ f (m)‖,

‖Es(Iβ1
0 (Ps( f )))(x)‖ ≤ c(r− 1)−m(2s−1)−m‖DmIβ1

0 (Ps( f ))‖,

‖(I −QN)(R)(x)‖ ≤ 1
(N + 1)!

‖R(N+1)‖. (50)

As a result, it makes sense to demonstrate that

‖eN(x)‖ ≤ CM(r− 1)−m(2s−1)−m +
1

(N + 1)!
‖R(N+1)‖, (51)

where M = MmaxM−1
2 with M−1

2 :=
(

1− M1
Γ(β1+1) −

Γ(β2)
Γ(β1+β2+1)

)
and

Mmax = max
{
‖u(m)

0 ‖, ‖(guN)
(m)‖, ‖DmIβ1

0 (Ps(guN))‖, ‖DmIβ1+β2
0 (uN)‖

, ‖ f (m)‖, ‖DmIβ1
0 (Ps( f ))‖

}
. (52)

It is worth mentioning that Mmax exists because u0(x), g(x), f (x) are sufficiently
smooth functions and guN ∈ As, Ps(guN) ∈ As, Ps( f ) ∈ As.

4. Numerical Simulations and Results

To demonstrate the performance of the present method, some examples are provided
in this section. To illustrate the results and make a global view of the present method and
its efficiency, sometimes, the absolute errors

eN = |u(x)− uN(x)|,

and L2 error

L2 − error =
(∫ 1

0
|u(x)− uN(x)|2

)1/2

,

are reported in Tables or plotted in Figures.
All examples are carried out with the combined use of Maple and Matlab software

(version 2022) with an Intel(R) Core(TM) i7-7700k CPU 4.20 GHz (RAM 32 GB).

Example 1. To contrast the suggested approach with the one described in [1], we consider the
following WSIDE:

CD1/3
0 u(x) = −32

35
x1/2u(x) +

∫ x

0
(x− t)−1/2u(t)dt + f (x), x ∈ [0, 1],

with u(0) = 0, and

f (x) =
6x8/3

Γ(11/3)
+

(
32/35− Γ(1/2)Γ(7/3)

Γ(17/6)

)
x11/6 + Γ(7/3)x.
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It is worth mentioning that u(x) = x3 + x4/3 is the exact solution for this example.
To demonstrate the effect of choosing the collocation points, we report Table 1. In Table 2,

we compare the proposed method using Legendre nodes and the trapezoidal collocation method
(TCM) [1]. We demonstrate the effect of increasing parameter r with different collocation points
in Figure 1. According to the results, reported in the tables and in Figure 1, using the Legendre
nodes gives better accuracy for this example. Also, compared to the trapezoidal collocation method,
the presented method has better results.

5 10 15 20

r

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

lo
g

2
(L

2
-e

rr
o
r)

Chebyshev nodes

Legendre nodes

Uniform meshes

Figure 1. The influence of the multiplicity parameter r on L2-errors for Example 1.

Table 1. The absolute error at different points, taking ν = 2/3, for Example 1.

r\x 0.1 0.3 0.5 0.7 0.9 CPU Time

Chebyshev nodes 5 8.26× 10−4 1.30× 10−3 4.40× 10−3 4.56× 10−3 3.33× 10−3 0.438
9 3.72× 10−5 5.33× 10−6 1.41× 10−4 1.18× 10−4 8.99× 10−5 1.125

Legendre nodes 5 9.00× 10−4 7.99× 10−4 3.29× 10−3 3.09× 10−3 2.15× 10−3 0.485
9 1.88× 10−5 1.07× 10−5 8.10× 10−5 6.76× 10−5 4.52× 10−5 1.125

Uniform meshes 5 2.07× 10−2 1.91× 10−2 1.58× 10−2 1.55× 10−2 2.15× 10−2 0.094
9 1.76× 10−4 1.25× 10−4 1.25× 10−4 1.43× 10−4 1.58× 10−4 0.531

Table 2. A comparison between the presented method and TCM [1] for Example 1.

Proposed Method TCM [1]
r = 5 r = 9 h = 1/5 h = 1/10

Error 3.51× 10−3 8.76× 10−5 2.08× 10−2 5.18× 10−3

Example 2. The following example focuses on the equation

CDβ
0 u(x) =

1
2

∫ x

0
(x− t)−1/2u(t)dt + f (x), x ∈ [0, 1],

with u(0) = 0, and

f (x) = 2x + 3x2 − 1/2x5/2Γ(3)
Γ(7/2)

− 1/2x7/2Γ(4)
Γ(9/2)

.
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Note that u(x) = x3 + x2 is the exact solution of this equation for β = 1.
Considering that by choosing all three types of collocation points, the exact solution is obtained

by choosing r = 4, so the results are reported only by choosing Chebyshev nodes.
Recall that CFD of a function u tends to integer derivative as β→ n, viz.

limβ→n
cDβu(x) = u(n)(x),

limβ→n−1
cDβu(x) = u(n−1)(x)− u(n−1)(0).

To demonstrate this effect, our results illustrated in Figure 2, obviously, demonstrate it. We
can see that when β → n, the approximate solution with increasing β tends to the results for n.
To show the efficiency and accuracy of the method, we reported the absolute value error in Figure 3
for β = 1, taking r = 4, J = 1 and ν = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-1

0

1

2

3

4

5

u
(x

)

=0.25

=0.5

=0.75

=0.90

=0.95

=1

Figure 2. Approximate solutions associated with different values of β, when ν = 1, r = 4 and J = 1,
for Example 2.
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x

-2.5

-2
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-1

-0.5

0

0.5

L
-e

rr
o
r

10
-49

Figure 3. Plot of absolute error for Example 2.
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Example 3. For the third one, we consider the equation

CD1/2
0 u(x) = exu(x) +

∫ x

0
(x− t)−1/2u(t)dt + f (x), x ∈ [0, 1],

with u(0) = 0, and

f (x) =
√

2 (cos(x)− sin(x))C

(√
2x√
π

)
+
√

2 (sin(x) + cos(x))S

(√
2x√
π

)
− ex sin(x),

in which S(x) and C(x) are the Fresnel integrals. The exact solution is considered for this example
to be u(x) = sin(x).

Table 3 is tabulated to demonstrate the effect of picking the collocation points. We illustrate the
effect of increasing parameter r with different collocation points in Figure 4. We have also presented
Figure 5 to show the accuracy of the method with different choices of collocation points.

Table 3. The absolute error at different points, taking ν = 1, for Example 3.

r\x 0.1 0.3 0.5 0.7 0.9 CPU Time

Chebyshev nodes 5 4.44× 10−6 8.12× 10−7 2.82× 10−5 4.34× 10−5 2.10× 10−4 0.360
9 2.80× 10−12 3.68× 10−11 2.80× 10−10 9.56× 10−10 3.91× 10−9 0.937

Legendre nodes 5 2.08× 10−6 3.41× 10−6 2.37× 10−5 4.94× 10−5 2.37× 10−4 0.359
9 2.59× 10−12 2.83× 10−11 2.14× 10−10 7.24× 10−10 2.97× 10−9 0.406

Uniform meshes 5 1.39× 10−5 1.58× 10−5 3.99× 10−5 1.18× 10−4 5.00× 10−4 0.406
9 4.35× 10−10 6.30× 10−10 1.44× 10−9 4.37× 10−9 1.88× 10−8 0.500

5 6 7 8 9 10 11 12

r

-50

-45

-40

-35

-30

-25

-20

-15

-10

lo
g

2
(L

2
-e

rr
o

r)

Chebyshev nodes

Legendre nodes

Uniform meshes

Figure 4. The effect of multiplicity parameter r on L2-errors for Example 3.
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Figure 5. The absolute errors using Chebyshev nodes (top left), Legendre nodes (top right) and
Uniform meshes for Example 3, taking r = 15 and ν = 1.

Example 4. Consider the following WSIDE

CD1/2
0 u(x) =

1
2

u(x) +
∫ x

0
(x− t)−1/2u(t)dt + f (x), x ∈ [0, 1],

with u(0) = 0, and

f (x) =
√

π

2
− πx

2
−
√

x
2

.

The exact solution is considered for this example to be u(x) =
√

x.
To illustrate the efficiency of the presented method for a non-smooth solution near the origin,

the absolute error of approximation is plotted in Figure 6. As we observe, the accuracy of the
approximate solution near the origin is also good. To demonstrate the effect of choosing the collocation
points, we report Table 4.

Table 4. The absolute error at different points, taking ν = 1/8, for Example 4.

r\x 0.1 0.3 0.5 0.7 0.9 CPU Time

Chebyshev nodes 12 1.67× 10−4 2.34× 10−4 3.67× 10−4 5.94× 10−4 1.00× 10−3 8.046
20 2.87× 10−5 3.81× 10−5 6.06× 10−5 9.98× 10−5 1.66× 10−4 75.250

Legendre nodes 12 2.20× 10−4 3.02× 10−4 4.77× 10−4 7.74× 10−4 1.30× 10−3 8.203
20 3.22× 10−5 4.28× 10−5 6.81× 10−5 1.12× 10−4 1.86× 10−4 75.265

Uniform meshes 12 2.04× 10−4 2.81× 10−4 4.44× 10−4 7.20× 10−4 1.21× 10−3 8.172
20 4.79× 10−5 6.36× 10−5 1.01× 10−4 1.67× 10−4 2.77× 10−4 83.828
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Figure 6. The absolute error using the Chebyshev nodes, taking ν = 1/8, r = 20, for Example 4.

5. Conclusions

The main objective of this work is to solve the WSIDE using the collocation method
and Müntz–Legendre wavelet. We use the collocation approach to solve the problem
after reducing the desired equation to a weakly singular Volterra integral equation. To
accomplish this, the Volterra equation is reduced to a system of nonlinear algebraic equa-
tions using the fractional integration operational matrix. We can determine the unknown
coefficients U after solving this system. The collocation points in this study are uniformly
spaced meshes or the roots of shifted Legendre and Chebyshev polynomials. The numerical
simulations illustrate the method’s effectiveness and correctness. The proposed method
offers superior outcomes compared to some existing methods. The error bound for the
desired equation based on the presented method is investigated.

In the future, we plan to extend our numerical approaches for solving generalized
fractional models, including the generalized time-space fractional diffusion equations with
variable coefficients [44] and time-fractional diffusion equations with a time-invariant type
variable order [45], etc.
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Abbreviations
The following abbreviations/nomenclatures are used in this manuscript:

Abbreviations
WSIDE Weakly singular integro-differential equations with fractional derivatives
ML Müntz–Legendre
RL Riemann–Liouville
FI Fractional integration
Nomenclatures
S(L) Space of Müntz–Legendre polynomials
C[0, 1] Space of continuous functions on [0, 1]
Ll(x) Müntz–Legendre polynomials
As Space of Müntz–Legendre wavelets
s Refinement level
r Multiplicity
Ps Projection operator
Iβ

0 Riemann–Liouville fractional integration
φn

s,b Müntz–Legendre wavelets
R(x) Residual function
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