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Abstract

In this paper, a periodic-review dynamic production inventory system for a single reusable product is investigated. There are two
stocks, one for the serviceable items and one for the remanufactured ones. We assume that the items in either stock may be subject
to deterioration. Items deterioration is of great importance to inventory theory. An optimal control is derived in the case where
the deterioration parameters are known and a self-tuning optimal control strategy is applied in the case where the deterioration
parameters are unknown. In particular, the recursive least-squares (RLS) method is used to identify the deterioration parameters.
Simulations are conducted to illustrate the results obtained.
c© 2007 Published by Elsevier Ltd
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1. Introduction

On the one hand, the environment has become one of the most important issues of our time, and no doubt it will
continue to be so well into the future. Most studies of recycling and remanufacturing focus on environmental benefits
because the major drivers – such as preventing the pollution associated with producing and refining virgin materials,
reducing the amount of trees that are cut down, and decreasing the amount of material that is landfilled – of recycling
and remanufacturing programs have traditionally been environmental in nature.

On the other hand, Operations Research (OR) has become one of the most important disciplines applying advanced
analytical methods to help make better decisions, and no doubt it will also continue to be so well into the future. One
of the environmental problems tackled by OR researchers concerns the important issue of remanufacturing, which is
the process of restoring or upgrading used products to a like-new condition. Indeed, even though the focus of past
studies has been almost solely on environmental benefits, recycling and remanufacturing are also important from an
economic perspective for many reasons. For example,

1. they directly employ individuals and supply valuable materials and products to downstream industries, thus
increasing the number of jobs;

I This research was supported by the College of Science Research Center at King Saud University under project No. Stat/2005/24.
∗ Corresponding author.

E-mail addresses: abdefoul@ksu.edu.sa (A. Foul), djemele@ksu.edu.sa (S. Djemili), lotftadj@ksu.edu.sa (L. Tadj).

1751-570X/$ - see front matter c© 2007 Published by Elsevier Ltd
doi:10.1016/j.nahs.2006.05.001

http://www.elsevier.com/locate/nahs
mailto:abdefoul@ksu.edu.sa
mailto:djemele@ksu.edu.sa
mailto:lotftadj@ksu.edu.sa
http://dx.doi.org/10.1016/j.nahs.2006.05.001


A. Foul et al. / Nonlinear Analysis: Hybrid Systems 1 (2007) 68–80 69

Fig. 1. Product recovery system.

2. they are high-growth industries since the amount of materials recycled or remanufactured has grown dramatically
over the years;

3. they allow savings in material costs and lower energy and waste disposal costs;
4. they improve the competitive position of some domestic industries in the international marketplace by lowering

costs.

Examples of industries that greatly benefited from recycling and remanufacturing are the steel industry, the aluminium
industry, and the paper industry.

The model we are considering was introduced by Hedjar et al. [7]. A graphical illustration of this simple
manufacturing/remanufacturing system is given in Fig. 1.

A number of authors have studied such hybrid production inventory systems [1,3–5,7]. The recent paper of Hedjar
et al. [7] contains a comprehensive survey of the literature on the topic and, to avoid unnecessary repetition, we refrain
from reproducing it here.

In this paper we examine a product recovery system and assume that there is no difference between newly
produced and recycled items, i.e., we apply the as-good-as-new principle, so that the customer makes no distinction
between manufactured and remanufactured products. Demand is satisfied either from production or remanufacturing
of returned products. We therefore deal with a deterministic model with dynamic demand and return. We also assume
that the item in either stock (serviceable and returned) may be subject to deterioration. Items deterioration is of great
importance in inventory theory, as shown by the survey of Goyal and Giri [6]. Examples of deteriorating items include
blood, photographic films, certain pharmaceuticals, and food stuffs.

Hedjar et al. [7] applied a receding horizon control strategy to the model. Receding horizon control, also known
as model predictive control, is a discrete-time technique in which the control action is obtained by repeatedly solving
online open loop optimization problems at each time step. In this paper, we are interested in the self-tuning optimal
control of this same model. That is, we study how to use control and identification methods for controlling the system
when its parameters are not all a priori known to the designer. This is a situation virtually always met in practice.

In the next section we introduce the notation and formally describe the system. We are assuming that the firm of
interest to us adopts a periodic-review (instead of a continuous-review) policy. Therefore, in this section, the problem,
which is initially formulated in continuous time, is also adapted to fit the periodic-review policy. In Section 3 we
study the optimal control of the system when all system parameters are known while in Section 4, we study the
optimal control of the system when not all system parameters are known. Illustrative examples are provided in both
Sections 3 and 4.

2. Model formulation and notation

We consider a production inventory system with two stocks. Items in the first stock are called serviceable. Items
in the second stock are called remanufactured. We will use throughout the paper the subscript “S” to indicate the
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quantity corresponding to the first (serviceable) stock and the subscript “R” to indicate the quantity corresponding to
the second (remanufactured) stock. So, for example, IS(t) represents the inventory level at time t in the first stock
while IR(t) represents the inventory level at time t in the second stock.

Let H denote the length of a finite planning horizon and consider the first stock. The production of new items at
rate PS(t) and the remanufacturing of returned items to like-new condition at rate PR(t) increases the inventory level.
Also, demand at rate DS(t) and deterioration at rate θS > 0 decreases the inventory level. Similarly, the inventory
level in the second stock increases by the returned items at rate DR(t) and decreases due to deterioration at rate θR > 0
and to the remanufactured items that are moved to the first stock at rate PR(t). The change in the level of inventory in
both stocks is therefore given by the following state equations{

İS(t) = −θS IS(t)+ PS(t)+ PR(t)− DS(t), ∀t ∈ [0, H ],

İR(t) = −θR IR(t)− Pr (t)+ DR(t), ∀t ∈ [0, H ].
(2.1)

We assume that the initial stocks are known

IS(0) = IS0, IR(0) = IR0. (2.2)

In the terminology of optimal control theory, IS(t) and IR(t) represent the state variables while the control variables
are PS(t) and PR(t) which need to be nonnegative:

PS(t) ≥ 0, PR(t) ≥ 0. (2.3)

In other words, we seek to find the optimal production and remanufacturing rates, that is the rates that minimize some
performance index. Now, in order to build this performance index, we assume that the firm has set the following goals

ÎS(t): inventory goal level for the first stock,
ÎR(t): inventory goal level for the second stock,
P̂S(t): production goal rate,
P̂R(t): remanufacturing goal rate,

and penalties are incurred for each variable to deviate from its corresponding goal. Denoting these penalties by qi ≥ 0
and ri > 0, (i = S, R), the problem is to minimize

J =
1
2

∫ H

0
{qS[IS(t)− ÎS(t)]2

+ qR[IR(t)− ÎR(t)]2
+ rS[PS(t)− P̂S(t)]2

+ rR[PR(t)− P̂R(t)]2
}dt (2.4)

subject to constraints (2.1)–(2.3). Since obviously it is more convenient to handle this problem using matrix notation,
we let

I (t) =

(
IS(t)
IR(t)

)
, Î (t) =

(
ÎS(t)
ÎR(t)

)
, I0 =

(
IS0
IR0

)
, 1I (t) = I (t)− Î (t),

P(t) =

(
PS(t)
PR(t)

)
, P̂(t) =

(
P̂S(t)
P̂R(t)

)
, 1P(t) = P(t)− P̂(t),

Q =

(
qS 0
0 qR

)
, R =

(
rS 0
0 rR

)
,

and

D(t) =

(
DS(t)
DR(t)

)
.

Also for any vector X (with transpose denoted by X>) and matrix A, let

‖X‖
2
A = X> AX.
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Then the problem is to minimize

J =
1
2

∫ H

0
{‖1I (t)‖2

Q + ‖1P(t)‖2
R}dt (2.5)

subject to:

İ (t) = −AI (t)+ B P(t)+ C D(t), ∀t ∈ [0, H ] (2.6)

and

I (0) = I0, P(t) ≥ 0, (2.7)

where

A =

(
θS 0
0 θR

)
, B =

(
1 1
0 −1

)
, C =

(
−1 0
0 1

)
.

Now suppose the firm adopts a periodic-review policy. To adapt our problem to this situation, we first note that the
solution to the state equation (2.5) is given by

I (t) = e−At I (0)+

∫ t

0
e−A(t−u)

[B P(u)+ C D(u)]du. (2.8)

Dividing the planning horizon [0, H ] into (N + 1) intervals [tk, tk+1] with tk = kT , k = 0, 1, . . . , N , and tN+1 = H ,
and rewriting the above expression at the end points tk yields

I (tk+1) = e−AT I (tk)+

∫ tk+1

tk
e−A(tk+1−t)

[B P(t)+ C D(t)]dt. (2.9)

Choose T small enough so that B P(t)+ C D(t) is constant over the intervals [tk, tk+1]. Then, expression (2.9) can be
written

I ((k + 1)T ) = φ(T )I (kT )+ Γ (T )P(kT )+ ψ(T )D(kT ), k = 0, . . . , N , (2.10)

where

φ(T ) = e−AT , Γ (T ) =


1 − e−θS T

θS

1 − e−θS T

θS

0 −
1 − e−θR T

θR

 , and ψ(T ) = I2 − φ(T )A−1.

Here I2 is the 2 × 2 identity matrix. It is easy to see that

φ(T ) =

(
e−θS T 0

0 e−θR T

)
and ψ(T ) =

−
1 − e−θS T

θS
0

0
1 − e−θR T

θR

 .

Without loss of generality, take T = 1, and for more simplicity in the notation, let φ = φ(1), Γ (1) = Γ , and
ψ = ψ(1). Then, expression (2.10) becomes

I (k + 1) = φ I (k)+ Γ P(k)+ ψD(k). (2.11)

Now introduce the shift operator 1:

1I (k) = I (k)− Î (k), 1P(k) = P(k)− P̂(k).

Expression (2.11) becomes

1I (k + 1) = φ1I (k)+ Γ1P(k), (2.12)
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and the optimal control problem is to minimize

J =
1
2

N∑
0

{‖1I (k)‖2
Q + ‖1P(k)‖2

R} (2.13)

subject to:

1I (k + 1) = φ1I (k)+ Γ1P(k), (2.14)

and

I (0) = I0, P(k) ≥ 0, k = 0, . . . , N . (2.15)

In the next section, we solve the optimal control problem, which consists of determining the optimal production and
remanufacturing rates, in the case where the deterioration rates θS and θR are known. In the following section, we
solve the same problem under the additional assumption that the deterioration rates are unknown.

3. Optimal control

We assume in this section that the rate parameters θS and θR are known so that the matrices φ and Γ are also
known. In this case, the problem is nonlinear and can be solved using the Lagrangian technique.

3.1. Analytical solution

To use the Lagrangian technique, introduce the Lagrange multipliers

λ(k) =

(
λS(k)
λR(k)

)
,

and the Lagrangian function

L =
1
2

N∑
0

{‖1I (k)‖2
Q + ‖1P(k)‖2

R} + λ>(k + 1)[−1I (k + 1)+ φ1I (k)+ Γ1P(k)]. (3.1)

The control equation ∇1P(k)L = 0 is equivalent to

R1P(k)+ Γ>λ(k + 1) = 0. (3.2)

The adjoint equation ∇1I (k)L = 0 is equivalent to

Q1I (k)+ φλ(k + 1)− λ(k) = 0, (3.3)

while ∇λ(k+1)L = 0 yields the state equation

1I (k + 1) = φ1I (k)+ Γ1P(k). (3.4)

To solve this set of equations, we use the sweep method of Bryson and Ho [2] and set

λ(k) = S(k)1I (k), (3.5)

where S(k), k = 0, . . . , N are positive matrices. Combining (3.2), (3.3) and (3.5) leads to

1P(k) = R−1Γ>φ−1
[Q − S(k)]1I (k). (3.6)

Combining (3.2), (3.4) and (3.5) leads to

1P(k) = −[R + Γ>S(k + 1)Γ ]
−1Γ>S(k + 1)φ1I (k). (3.7)

Equating (3.6) and (3.7) yields the following discrete Ricatti equation (DRE):

S(k) = φ(Γ>)−1 R[R + Γ>S(k + 1)Γ ]
−1Γ>S(k + 1)φ + Q. (3.8)
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The recursive DRE can be solved backwards, starting from

S(N ) = Q, (3.9)

since 1P(N ) has no effect on the objective function and therefore 1P(N ) = 0. Now, combining (3.3) and (3.5) we
obtain

1I (k + 1) = S(k + 1)−1φ−1
[S(k)− Q]1I (k), k = 0, . . . , N − 1, (3.10)

which allows to compute recursively, starting from I (0) = I0, the optimal trajectory. Also, combining (3.4) and (3.10),
we get

1P(k) = Γ−1
[1I (k + 1)− φ1I (k)], k = 0, . . . , N − 1. (3.11)

Since only nonnegative production rates are allowed, the optimal production rates are chosen equal to

max{Γ−1
[1I (k + 1)− φ1I (k)], 0}, k = 0, . . . , N − 1. (3.12)

A closed form expressions for 1I (k) can be obtained from (3.10) as:

1I (k) = (φ−1)k
k∏

i=0

[I2 − S(i)Q][S(k)− Q]
−1S(0)1I (0), (3.13)

and for 1P(k) from (3.11) as:

1P(k) = Γ−1(φ−1)k+1
k∏

i=0

[I2 − S(i)−1 Q]Γ R−1Γ>S(0)1I (0). (3.14)

For expressions (3.13) and (3.14) to be fully explicit, one still has to determine S(0). Note that from (3.3), one has

λ(N − i) = Q
i−1∑
j=0

φ j1I (N − i + j), i = 0, . . . , N . (3.15)

Since 1I (N ) = 0, setting i = N in (3.15), one readily has:

S(0)1I (0) = Q
N−1∑
j=0

φ j1I ( j). (3.16)

Although closed form expressions have been explicitly derived for 1I (k) and 1P(k), it is the recursive relations
(3.10) and (3.11) that are used for computational purposes.

3.2. Numerical illustration

For this numerical example, we will use the same data as Minner and Kleber [8]. The demand and return rates over
a planning horizon of H = 54 weeks (approximately 1 year) are given by the following two functions:

DS(t) = c1 + c2 sin(t),

DR(t) =

{
c3 DS(t − 4), t ≥ c4,

0, t > c4.

The demand and return rates are sinusoidal functions of time. The term c4 represents the delay between the demand
and the corresponding return. Fig. 2 depicts the variations of the demand and return rates for the following values of
the parameters: c1 = 1, c2 = 0.5, c3 = 0.4, and c4 =

H
4 .

For the simulation, the inventory goal levels and the initial inventory level were chosen to be ÎS(t) = 15, ÎR(t) = 10
and IS0 = 10, IR0 = 15, respectively. We also assumed the following deterioration rates θS = .01 and θR = .02 and
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Fig. 2. Demand and return rates.

the following penalty costs qS = 10, qR = 4, rS = 12, and rR = 8. The first step is to compute the production goal
rate which must satisfy the state equation (2.6), and thus

P̂(k) = max{B−1
[AÎ (k)− C D(k)], 0}.

Next we successively compute the matrices S from (3.8), the optimal inventory levels I from (3.10), and the optimal
production rates P from (3.11). Fig. 3 shows the optimal state variable and as can be seen, I (solid line) converges to
Î (dashed line).

Also, Fig. 4 shows the optimal control variable and also, as can be seen, P (solid line) converges to P̂ (dashed
line).

3.3. Extension to the infinite horizon

Assume now the planning horizon is no longer finite, i.e., (H = ∞). Then it is straightforward to extend the results
obtained previously in this section. In this case, we look for the steady-state solution of the DRE (3.8). Denoting by
S∞ the limit of the sequence S(k) when k → ∞, we have from (3.8)

S∞ = φ(Γ>)−1 R[R + Γ>S∞Γ ]
−1Γ>S∞φ + Q. (3.17)

The computation of the elements of the matrix S∞ is now much simpler than before. Indeed, when H was finite, we
needed to compute a whole sequence of matrices S(k), while now we only need to compute the elements of the matrix
S∞, which is a simple matter since Eq. (3.17) reduces to a simple system of two linear equations. Then, from (3.10),
the optimal states are now given by

1I (k + 1) = S−1
∞ φ−1

[S∞ − Q]1I (k), k = 0, 1, . . . (3.18)

while the optimal controls are still given by (3.11)

1P(k) = Γ−1
[1I (k + 1)− φ1I (k)], k = 0, 1, . . . . (3.19)
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Fig. 3. Optimal inventory levels I .

Fig. 4. Optimal production rates P .
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4. Self-tuning optimal control

In this section the rate parameters θS and θR are assumed to be no longer known and therefore so are the matrices
φ and Γ . In this case, we are faced with the problem of estimating these matrices. This is known as parameters
identification in optimal control theory. This step is carried out below using the recursive least-squares (RLS)
algorithm.

4.1. Analytical solution

In a first step, we will assume that all the states I (0), . . . , I (N ) are known a priori. Then, from (2.11), we have

I (k + 1) = φ I (k)+ Γ P(k)+ ψD(k)

= φ I (k)+ Γ [P(k)+ Γ−1ψD(k)] (4.1)

so that by setting

U (k) = P(k)+ Γ−1ψD(k)

= P(k)+ F D(k) (4.2)

where

F = Γ−1ψ =

(
−1 1
0 −1

)
,

expression (4.1) can be written

I (k) = φ I (k − 1)+ ΓU (k − 1). (4.3)

For convenience, let

aS = e−θS , aR = e−θR , bs =
1 − e−θS

θS
, bs =

1 − e−θS

θS
.

Also, let

U (k) =

(
US(k)
UR(k)

)
.

Then, (4.3) becomes

I (k) = M(k)W, (4.4)

where

M(k) =

IS(k − 1) 0 | US(k − 1)+ UR(k − 1) 0
|

0 IR(k − 1) | 0 −UR(k − 1)

 , (4.5)

and

W =
(
aS aR bS bR

)>
,

is the vector that we need to estimate. Let e(k, Ŵ ) be the equation error defined as

e(k, Ŵ ) = I (k)− M(k − 1)Ŵ ,

where Ŵ is the estimate of W . The principle of least-squares says that the estimate Ŵ is the point of the minimum of
the performance measure

J2(Ŵ ) =

N+1∑
k=1

e2(k, Ŵ ) = E>(N , Ŵ )E(N , Ŵ ),
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where

E(N , Ŵ ) = Y (N )− X (N )Ŵ ,

Y (N ) =
(
I >(1) I >(2) · · · I >(N + 1)

)>
,

X (N ) =
(
M>(0) M>(1) · · · M>(N )

)>
.

Taking the gradient vector with respect to Ŵ :

∇Ŵ J2(Ŵ ) = 0 ⇐⇒ Ŵ = [X>(N )X (N )]−1 X>(N )Y (N ). (4.6)

Recall that in order to derive the estimate (4.6), we have assumed that all the states I (0), . . . , I (N ) were known.
Obviously, this is not the case since only I (0) is known at time 0. In order to estimate W , the RLS algorithm can
be used. Knowing I (0) and guessing initial values for W , we can use (4.6) to compute our first estimate of W . This
first estimate is then used to compute I (1). Then using I (1), we use (4.6) to compute our second estimate of W . This
second estimate is then used to compute I (2), and so on. At the (k + 1)th iteration, in order to minimize the number
of operations, use is made of the computations carried out at the kth iteration. This is known as the RLS algorithm,
and the full procedure is described in the next paragraph.
Recursive least-squares algorithm. Let Ŵ (k) denote the least-squares estimate based on k measurements
I (1), . . . , I (k). From (4.6) we have

Ŵ (k) = [X>(k)X (k)]−1 X>(k)Y (k).

Assume an additional measurement, the (k + 1)th, is added:

X (k + 1) =

(
X (k)

M(k + 1)

)
, Y (k + 1) =

(
Y (k)

I (k + 1)

)
.

The estimate Ŵ (k + 1) based on (k + 1) measurements can be written as

Ŵ (k + 1) = [X>(k + 1)X (k + 1)]−1 X>(k + 1)Y (k + 1)

= [X>(k)X (k)+ M>(k + 1)M(k + 1)]−1
[X>(k)Y (k)+ M>(k + 1)I (k + 1)]. (4.7)

We define the 4 × 4 matrix R(k) by the recursion

R(k + 1) = [X>(k + 1)X (k + 1)]−1
= G(k)R(k),

where

G(k) = [I4 + R(k)M>(k + 1)M(k + 1)]−1.

Substituting for R(k + 1) into (4.7), we obtain

Ŵ (k + 1) = G(k)Ŵ (k)+ G(k)R(k)M>(k + 1)I (k + 1)
= G(k)[Ŵ (k)+ R(k)M>(k + 1)I (k + 1)].

Note that the new estimate Ŵ (k + 1) uses the previous estimate Ŵ (k) and the new measurement I (k + 1).

4.2. Numerical illustration

We carry out a numerical example using the same data as in Section 3.2, except that now θS and θR are unknown.
To implement the RLS algorithm, we start with the initial guess Ŵ (0) =

(
0.5 0.5 0.4 0.4

)>. We also take
R(0) = 100I4. Fig. 5 shows the successive updates of the estimates aS and bS while Fig. 6 shows the successive
updates of the estimates aR and bR .

Both estimates converge quite rapidly to the exact values, represented by *. Also, Fig. 7 shows the optimal state
variable and as can be seen, I (solid line) converges to Î (dashed line).

Finally, Fig. 8 shows the optimal control variable and also, as can be seen, P (solid line) converges to P̂ (dashed
line).
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Fig. 5. Estimates of aS and bS .

Fig. 6. Estimates of aR and bR .
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Fig. 7. Optimal inventory levels I .

Fig. 8. Optimal production rates P .
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