King Saud University Department of Mathematics

151 First Midterm, November 2014

NAME:

Group Number:

ID:

Question	Grade
Ι	
II	
III	
Total	

Question	1	2	3	4	5	6	7	8	9	10
Answer										

I) Choose the correct answer (write it on the table above):

1) The statement $[\neg q \land (p \rightarrow q)] \rightarrow \neg p$ is a

(A) tautology	(B) contradiction	(C) None

2) The argument $\neg [p \lor (\neg p \land q)]$ is logically equivalent to

(A) $\neg p \land \neg q$	$(B) \neg (p \land q)$	(C) $p \lor \neg q$	(D) None
---------------------------	------------------------	---------------------	----------

3) The argument

 $p \to q$ $r \to \neg p$ $r \to q$ - - - - - $\therefore q$ is

(A) valid	(B) invalid	(C) None

4) The Cartesian product of $A=\{a,b\}$ and $B=\{x,y,z\}$ is

(A)	(B) $\{(a, x), (a, y), (a, z), \}$	(C)	(D)
$\{a, b, x, y, z\}$	$(b,x),(b,y),(b,z)\}$	$\{ax, ay, az, bx, by, bz\}$	None

5) If the universal set is the set \mathbb{Z} of integers, then the statement $\exists x(x^2=2)$ is

(A) true	(B) false

6) Given that propositions p and q are true and propositions r and s are false, the truth value of the expression $(p \leftrightarrow r) \land (\neg q \rightarrow s)$ is

(A) true	(B) false
----------	-----------

7) If $A = \{1, 2, 4\}$ and $B = \{1, 3\}$, then $\mathcal{P}(A \cup B)$ has

(A) 8 elements	(B) 16 elements	(C) 12 elements	(D) Other
			answer

8) If A and B are any sets, then $A \cap (B \setminus A)$ equals

(A) <i>A</i>	(B) $B \setminus A$	(C) Ø	(D) Other answer
--------------	---------------------	-------	------------------

9) If the proposition p is false, then the conditional statement $p \to q$ is

|--|

10) The number $\sqrt{3}$ is

(A) integer	(B) rational	(C) irrational
-------------	--------------	----------------

II) A) Write the contrapositive of the statement:
"Your guarantee is valid only if you bought your CD player less than 90 days ago".

B) Find the negation of the statement: "All students enrolled in Math 151 are older than 20 years and taller than 130 cm".

C) Without using a truth table, prove the equivalence

 $(p \to q) \land (p \to \neg q) \equiv \neg p.$

III) A) Prove the theorem:

"If n is an integer number, then n is odd if and only if 5n + 2 is odd".

B) Prove that $2^n \le n^2$, for all integers n, with 1 < n < 5.