


# Statistical analysis using R

College of Sciences (Stat & OR, KSU)





نوره المسعود أمل المحيسن

College of Sciences (Stat & OR, KSU)

R programming

# Outline



- 1. Introduction. What & Why R
- 2. Brief Navigation of R.
- 3. Types of R objects and Data.
- 4. Basic Command in R.
- 5. Matrices.
- 6. Some Statistical Distributions.
- 7. Graphics.
- 8. Simple Linear Regression

# Statistical analysis



Once you have collected quantitative data, you will have a lot of numbers.

It's now time to carry out some statistical analysis to make sense of, and draw some inferences from, your data.

There is a wide range of possible techniques that you can use.

We will provides a brief summary of some of the most common techniques for summarizing

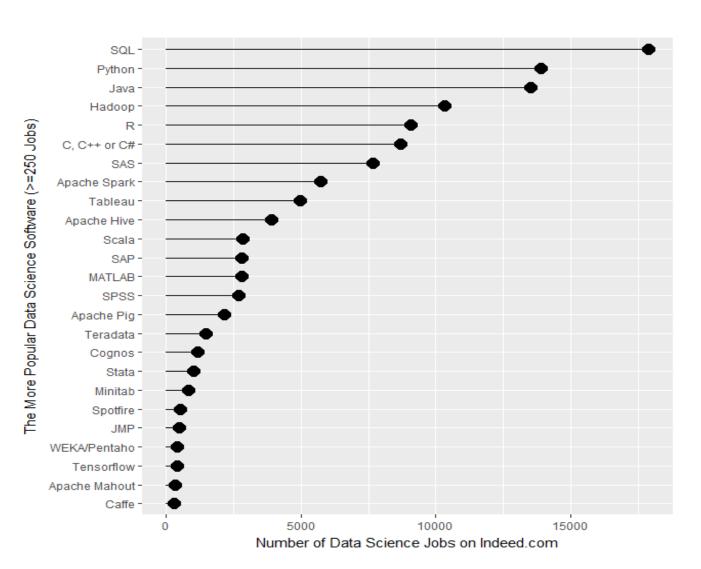
your data, and explains when you would use each one by using  $\underline{\mathbf{R}}$ 

# What is R ?



**R** is a programming language.

- R is an open-source software environment for statistical computing and graphics.
- R works with a command-line interface, meaning you type in commands telling R what to do .
- For more information and to download R, visit Cran.r-project.org


# Why learn R?

- It supports larger data sets. Excel ~ 1 Million , R~2 Billion vector index limit
- Faster. i.e. 100K in excel ~15 mins vs 1M ~30 second
- It reads any type of data.
- Availability of instant access to over 7800 packages customized for various computation tasks.
- Get high performance computing experience.
- Advanced Statistics capabilities.
- The community support is overwhelming. There are numerous forums to help you out. For example:
  - 1. Numerous Discipline Specific R Groups
  - 2. Numerous Local R User Groups (including R-Ladies Groups)
  - 3. Stack Overflow
- Learning Resources (quantity and quality)
  - 1. <u>R books</u>
  - 2. (Free Online) R Books
  - 3. https://www.datasciencecentral.com/profiles/blogs/600-websites-about-r

#### **Reproducibility (important for detecting errors)**

College of Sciences (Stat & OR, KSU)





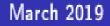


College of Sciences (Stat & OR, KSU)

#### R programming

# Difference Between R & RStudio

R: Engine




**RStudio: Dashboard** 



R: Do not open this RStudio: Open this

College of Sciences (Stat & OR, KSU)





# **Getting started with R**

How to install R and R Studio ?

https://www.youtube.com/watch?v=Ohnk9hcxf9M&feature=youtu.be

R studio ( nice editor and features )

College of Sciences (Stat & OR, KSU)

### **R** studio



| Untitled1 ×                                                                                                                                  |                          | - 0            | Environment Hist     | tory Connections                  | -1              |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|----------------------|-----------------------------------|-----------------|
| 🗇 🖒 🗐 🔒 🗌 Source on Save 🛛 🔍 🎢 🚽 📗                                                                                                           | -> Run                   | 🐤 🕞 Source 👻 🗏 | 💣 🔒 🖙 Impo           | ort Dataset 👻 🥑                   | 🗏 List 🗸 🖉      |
| 1                                                                                                                                            |                          |                | 🦺 Global Environme   | ent 🔹                             | Q,              |
|                                                                                                                                              | R script<br>(work space) |                |                      | Environment is empty              |                 |
|                                                                                                                                              | (work space)             | )              |                      | kages Help Viewer                 |                 |
|                                                                                                                                              |                          |                | R: Arithmetic Mean 🔻 | Find in Topic                     |                 |
|                                                                                                                                              |                          |                | mean {base}          |                                   | R Documentation |
| 1:1 (Top Level) \$                                                                                                                           |                          | R Script \$    | Arithmetic           | : Mean                            |                 |
| Console Terminal ×                                                                                                                           |                          | - 0            | Description          |                                   |                 |
| ~/ @                                                                                                                                         |                          |                | Generic function fo  | or the (trimmed) arithmetic mean. |                 |
| R version 3.5.2 (2018-12-20) "Eggshell Igloc<br>Copyright (C) 2018 The R Foundation for Statist<br>Platform: x86_64-w64-mingw32/x64 (64-bit) |                          | ^              | Usage                |                                   |                 |
|                                                                                                                                              | CONSOLE                  |                |                      | Files,plot,package                | s,help          |

College of Sciences (Stat & OR, KSU)

R programming

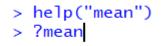
# **Working directory**



If you need to check the current working directory use :getwd() If you need to change the current working directory use the following step :

| RStu     | dio     |            |                     |                    |                        |              |
|----------|---------|------------|---------------------|--------------------|------------------------|--------------|
| File Ed  | it Code | View Plots | Session Build Debug | Profile Tools Help |                        |              |
| D - Q    | s 🗠 -   | 886        | New Session         |                    |                        |              |
| myd      |         |            | Interrupt R         | Interrupt R        |                        | _            |
|          |         | Filter     | Terminate R         |                    |                        | Q,           |
| <u> </u> | X1.23   |            |                     |                    |                        |              |
| 1        | 2;23    |            | Restart R           | Ctrl+Shift+F10     |                        |              |
| 2        | 3;23    |            | Set Working Direct  | torv 🕨             | To Source File Locatio | n l          |
| 3        | 4;23    |            |                     |                    |                        |              |
| 4        | 5;23    |            | Load Workspace      |                    | To Files Pane Location | 1            |
| 5        | 6;23    |            | Save Workspace A    | .S                 | Choose Directory       | Ctrl+Shift+H |
| 6        | 7;23    |            | Clear Workspace     |                    |                        |              |
| 7        | 8;23    |            |                     |                    |                        |              |
| 8        | 9;23    |            | Quit Session        | Ctrl+Q             |                        |              |
| 9        | 10;23   |            |                     |                    |                        |              |
| 10       | 11;23   |            |                     |                    |                        |              |

College of Sciences (Stat & OR, KSU)




# Help in R



March 2019

To get more information on any built-in R commands, simply type the following and this will bring up a separate help page.



| Files Plots Packages Help Viewer                           | _               |  |
|------------------------------------------------------------|-----------------|--|
| 🧼 🔿 🏠 📥 🔊                                                  | <b>Q</b> ,      |  |
| R: Arithmetic Mean 👻 Find in Topic                         |                 |  |
| mean {base}                                                | R Documentation |  |
| Arithmetic Mean                                            |                 |  |
| Description                                                |                 |  |
| Generic function for the (trimmed) arithmetic mean.        |                 |  |
| Usage                                                      |                 |  |
| mean(x,)                                                   |                 |  |
| ## Default S3 method:<br>mean(x, trim = 0, na.rm = FALSE,) |                 |  |
| Arguments                                                  |                 |  |

R programming

College of Sciences (Stat & OR, KSU)

# **Loading Data**



From your spreadsheet editing program (Excel, Google Docs, etc ) save your spreadsheet as a csv. File on your computer. In R, decide on a name for your dataset. Usually a short name relevant to the particular dataset is best. Lets assume you picked the name (mydata).

```
Type
> mydata = read.csv("mydata.csv")
> |
```

# Importing and exporting data



There are many ways to get data into R and out of R.

Most programs (e.g. Excel), as well as humans,

- know how to deal with rectangular tables in the form of tab-delimited text files.
- > x = read.delim("filename.txt")
- also: read.table, read.csv
- > write.table(x, file="x.txt", sep="\t")

# **R** packages

1. Installation

install.packages("packagename")

2. Loading

Library(packagename)

3. Use

?packagename

# **Saved files**



- You can scroll back to previous commands typed by using the `up' arrow key and `down' to scroll back again.
- You can also `copy' and `paste' using standard windows editor techniques (for example, using the `copy' and `paste' dialog buttons).
- If at any point you want to save the transcript of your session, click on `File' and then `Save', which will enable you to save a copy of the commands you have used for later use.
- As an alternative you might copy and paste commands manually into a note pad editor or something similar. You finish an R session by typing
- <q().

# Five basic classes of objects



What is an object?

Numeric :(Real Numbers)
 Integer : (Whole Numbers)
 character
 Logical (True / False)
 complex

# Example



- <- c(1.8, 4.5) #numeric
- b <- c(1 + 2i, 3 6i) #complex
- d <- c(23, 44) #integer
- e <- rep(c("Male",Female"),each=5)</li>

# Data Types in R

• Vector: a vector contains object of same class.

#### Ex: bar <- 0:5

• Matrices: When a vector is introduced with row and column i.e. a dimension attribute, it becomes a matrix. A matrix is represented by set of rows and columns. It is a 2 dimensional data structure. It consist of elements of same class.

Ex: my\_matrix <- matrix(1:6, nrow=3, ncol=2)</pre>

- Data Frame: This is the most commonly used member of data types family. It is used to store tabular data. It is different from matrix. In a matrix, every element must have same class. But, in a data frame, you can put list of vectors containing different classes.
  - Ex: df <- data.frame(name = c("Sara","Wafa","Norah","Reem"), score = c(67,56,87,91))</p>
- List: A list is a special type of vector which contain elements of different data types.
  - Ex: my\_list <- list(22, "ab", TRUE, 1 + 2i)</p>



### **Basic Commands**

College of Sciences (Stat & OR, KSU)



# **Arithmetic operations:**

| Operator | Description                 |
|----------|-----------------------------|
| +        | addition                    |
| -        | subtraction                 |
| *        | multiplication              |
| /        | division                    |
| ^ or **  | exponentiation              |
| x %% y   | modulus (x mod y) 5%%2 is 1 |
| x %/% y  | integer division 5%/%2 is 2 |

> 2+10[1] 12 > 11-10 [1] 1 > 3\*5 [1] 15 > 2^3 [1] 8 > 2\*\*3 [1] 8 > 6/2 [1] 3 > 6%/%4 [1] 1 > 5%%2 [1] 1



#### College of Sciences (Stat & OR, KSU)

#### R programming

# Mathematical functions :

> log(5) [1] 1.609438 > exp(-2) [1] 0.1353353  $> \log 10(10)$ [1] 1 > sqrt(16) [1] 4 > factorial(3) [1] 6 > choose(4,2) F11 6 > gamma(5)[1] 24

> floor(3.66) [1] 3  $> \cos(0)$ [1] 1> sin(0)[1] 0 > tan(45)[1] 1.619775 > acos(1)[1] 0 > acosh(60)[1] 4.787422 > abs(-9)[1] 9 > pi[1] 3.141593



| Mathematical | functions | used | in l | R. |
|--------------|-----------|------|------|----|
|--------------|-----------|------|------|----|

| Function                           | Meaning                                                                       |
|------------------------------------|-------------------------------------------------------------------------------|
| log(x)                             | log to base e of x                                                            |
| exp(x)                             | antilog of $x$ ( $e^x$ )                                                      |
| log(x,n)                           | log to base n of x                                                            |
| log10(x)                           | log to base 10 of x                                                           |
| sqrt(x)                            | square root of x                                                              |
| factorial(x)                       | x!                                                                            |
| choose(n,x)                        | binomial coefficients $n!/(x! (n-x)!)$                                        |
| gamma(x)                           | $\Gamma(x)$ , for real x $(x-1)!$ , for integer x                             |
| lgamma(x)                          | natural log of $\Gamma(x)$                                                    |
| floor(x)                           | greatest integer $< x$                                                        |
| ceiling(x)                         | smallest integer $> x$                                                        |
| trunc(x)                           | closest integer to x between x and 0 trunc(1.5) = 1, trunc(-1.5)              |
|                                    | = -1 trunc is like floor for positive values and like ceiling for             |
|                                    | negative values                                                               |
| round(x, digits=0)                 | round the value of x to an integer                                            |
| signif(x, digits=6)                | give x to 6 digits in scientific notation                                     |
| runif(n)                           | generates <i>n</i> random numbers between 0 and 1 from a uniform distribution |
| cos(x)                             | cosine of x in radians                                                        |
| sin(x)                             | sine of x in radians                                                          |
| tan(x)                             | tangent of x in radians                                                       |
| acos(x), asin(x), atan(x)          | inverse trigonometric transformations of real or complex numbers              |
| acosh(x), $asinh(x)$ , $atanh(x)$  | inverse hyperbolic trigonometric transformations of real or                   |
|                                    | complex numbers                                                               |
| abs(x)                             | the absolute value of $x$ , ignoring the minus sign if there is one           |
| College of Sciences (Stat & OR, KS | 5U) R programming March 2019                                                  |

# Vector :

```
> x<-c(1,6,4,100)
> x
[1] 1 6 4 100
> y<-c(1:4)
> y
[1] 1 2 3 4
>
```



#### College of Sciences (Stat & OR, KSU)

#### R programming

# **Vector Functions:**

> x < -c(1, 6, 4, 100)> y < -(1:4)> x+y7 104 [1] 2 8  $> x^*y$ [1] 1 12 12 400 > sum(x)[1] 111  $> \min(y)$ [1] 1 > max(y)[1] 4 > mean(x)[1] 27.75 > median(x)[1] 5 > range(x) [1] 1 100 > var(x)[1] 2324.25 > sd(x)[1] 48.21048 > cor(x,y)[1] 0.7899598

```
> sort(x)
[1]
   1 4 6 100
> rank(x)
[1] 1 3 2 4
> summary(x)
  Min. 1st Qu. Median Mean 3rd Qu. Max.
  1.00
       3.25 5.00 27.75 29.50 100.00
> cumsum(x)
[1]
           11 111
> prod(y)
[1] 24
```

College of Sciences (Stat & OR, KSU)

Vector functions used in R.

| Operation   | Meaning                                                                                                                                      |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| max(x)      | maximum value in x                                                                                                                           |
| min(x)      | minimum value in x                                                                                                                           |
| sum(x)      | total of all the values in x                                                                                                                 |
| mean(x)     | arithmetic average of the values in x                                                                                                        |
| median(x)   | median value in x                                                                                                                            |
| range(x)    | vector of $min(x)$ and $max(x)$                                                                                                              |
| var(x)      | sample variance of x                                                                                                                         |
| cor(x,y)    | correlation between vectors x and y                                                                                                          |
| sort(x)     | a sorted version of x                                                                                                                        |
| rank(x)     | vector of the ranks of the values in x                                                                                                       |
| order(x)    | an integer vector containing the permutation to sort x into ascending order                                                                  |
| quantile(x) | vector containing the minimum, lower quartile, median, upper quartile, and maximum of $x$                                                    |
| cumsum(x)   | vector containing the sum of all of the elements up to that point                                                                            |
| cumprod(x)  | vector containing the product of all of the elements up to that point                                                                        |
| cummax(x)   | vector of non-decreasing numbers which are the cumulative maxima of the values in x up to that point                                         |
| cummin(x)   | vector of non-increasing numbers which are the cumulative minima of the values in x up to that point                                         |
| pmax(x,y,z) | vector, of length equal to the longest of $x$ , $y$ or $z$ , containing the maximum of $x$ , $y$ or $z$ for the <i>i</i> th position in each |
|             |                                                                                                                                              |

#### College of Sciences (Stat & OR, KSU)

# **Logical Operators**



| Operator | Description              |         |
|----------|--------------------------|---------|
| <        | less than                |         |
| <=       | less than or equal to    | >       |
| >        | greater than             | >       |
| >=       | greater than or equal to | L<br>>  |
| ==       | exactly equal to         | Ē       |
| !=       | not equal to             | ><br>[: |
| !x       | Notx                     | >       |
| x   y    | x OR y                   | [:<br>> |
| х & у    | x AND y                  |         |

→ xx<-c(1:10) > xx[x<=5|x>8] [1] 1 3 4 5 7 8 9 5==3 1] FALSE 3 == 31] TRUE 3! = 5TRUE

College of Sciences (Stat & OR, KSU)



# Matrices

College of Sciences (Stat & OR, KSU)



### **Write matrix and Dimensions**

```
R
```

```
> A<-matrix(c(2,3,4,5),nrow=2,ncol=2)</p>
> A
     [,1] [,2]
[1,] 2 4
    3 5
[2,]
> B < -matrix(c(1,0,0,8), nrow=2, ncol=2)
> B
     [,1] [,2]
[1,] 1
[2,]
             8
        0
> dim(A)
[1] 2 2
> dim(B)
[1] 2 2
> A[2,1]
F17 3
```

College of Sciences (Stat & OR, KSU)

## Multiplication

> A+B [,1] [,2] 3 [1,]- 4 [2,] 3 13 > B-A [,1] [,2] [1,] -1 -4 [2,] -3 3 > B/A[,1] [,2] [1,] 0.5 0.0 [2,] 0.0 1.6 > A%\*%B [,1] [,2] [1,] 2 32 [2,] 3 40 > 2\*A [,1] [,2] [1,] 8 4 [2,] 6 10

### Transpose

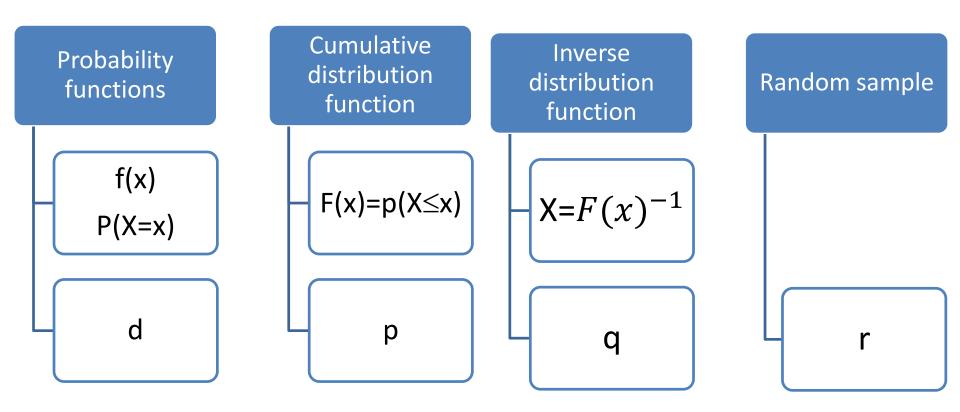
> t(A)
 [,1] [,2]
[1,] 2 3
[2,] 4 5



Inverse

> solve(A)
 [,1] [,2]
[1,] -2.5 2
[2,] 1.5 -1
>

College of Sciences (Stat & OR, KSU)




# **Statistical distributions in R**

College of Sciences (Stat & OR, KSU)



# Common Probability Distribution Functions in R



College of Sciences (Stat & OR, KSU)

R programming

| R function | Distribution                   | Parameters               |
|------------|--------------------------------|--------------------------|
| beta       | beta                           | shape1, shape2           |
| binom      | binomial                       | sample size, probability |
| cauchy     | Cauchy                         | location, scale          |
| exp        | exponential                    | rate (optional)          |
| chisq      | chi-squared                    | degrees of freedom       |
| f          | Fisher's F                     | df1, df2                 |
| gamma      | gamma                          | shape                    |
| geom       | geometric                      | probability              |
| hyper      | hypergeometric                 | m, n, k                  |
| Inorm      | lognormal                      | mean, standard deviation |
| logis      | logistic                       | location, scale          |
| nbinom     | negative binomial              | size, probability        |
| norm       | normal                         | mean, standard deviation |
| pois       | Poisson                        | mean                     |
| signrank   | Wilcoxon signed rank statistic | sample size n            |
| t          | Student's t                    | degrees of freedom       |
| unif       | uniform                        | minimum, maximum (opt.)  |
| weibull    | Weibull                        | shape                    |
| wilcox     | Wilcoxon rank sum              | <i>m</i> , <i>n</i>      |

#### College of Sciences (Stat & OR, KSU)

#### R programming

### **Discrete Probability Distributions**

#### The binomial distribution:

```
> #p(x=3)
>>
 dbinom(3,20,1/6)
>
[1] 0.2378866
 #p(x<=3)
>
 pbinom(3,20,1/6)
>
[1] 0.5665456
 #random sample
>
>
> rbind(3,20,1/6)
            [.1]
      3.0000000
11.1
[2.] 20.0000000
[3,] 0.1666667
>
> #invers
> qbinom(0.105,20,1/6)
[1] 1
>-
```



X is Binomial Distribution with n=20 trials and p=1/6 probability of success X~BIN(n=20,p=1/6)

dbinom(x, size, prob)
pbinom(x, size, prob)
qbinom(p, size, prob)
rbinom(n, size, prob)

#### College of Sciences (Stat & OR, KSU)

#### R programming

### **Discrete Probability Distributions**

#### The Poisson distribution:

```
> #P(X=1)
>
> dpois(1,2)
[1] 0.2706706
>
> #P(x<=4)</p>
>
 ppois(4,2)
[1] 0.947347
>
 #random Sample
>
> rpois(3,2)
[1] 1 0 3
>
 #invers
>
> qpois(0.432,2)
[1] 2
>
```



#### X is Poisson Distribution with □=2 X~Pois(2)

dpois(x, lambda) ppois(q, lambda) qpois(p, lambda) rpois(n, lambda)

#### College of Sciences (Stat & OR, KSU)

#### R programming

**Continuous Probability Distributions** 

#### The Normal distribution:

```
> dnorm(5,3,4)
[1] 0.08801633
> pnorm(1.69,3,4)
[1] 0.3716449
> qnorm(0.3716,3,4)
[1] 1.689525
> rnorm(2,3,4)
[1] 0.9303246 8.6888187
> |
```

X is Normal Distribution with  $\mu$ =3 and  $\Box$ =4, X~N(3,4)

dnorm(x, mean, sd)
pnorm(x, mean, sd)
qnorm(p, mean, sd)
rnorm(n, mean, sd)





**Continuous Probability Distributions** 

## The Exponential distribution:



```
> #P(X=2)
>
> dexp(2,2)
[1] 0.03663128
>
 #P(X<=4)
> pexp(4,2)
[1] 0.9996645
>
> #random sample
> rexp(4,2)
[1] 0.1368625 0.1511670 0.2151919 0.5941433
>
 #invers
> qexp(0.42,2)
[1] 0.2723636
```

X is Exponential Distribution with λ=2 X~Exp(2)

dexp(x,lambda)
pexp(q,lambda)
qexp(p,lambda)
rexp(n,lambda)

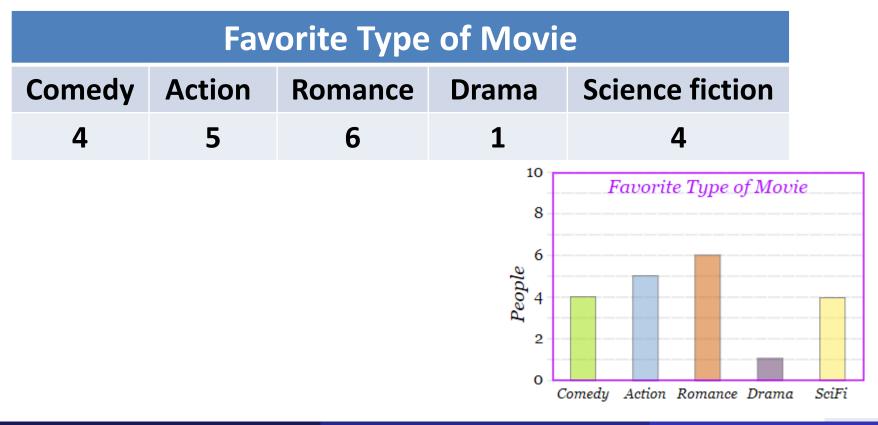
College of Sciences (Stat & OR, KSU)

### R programming



# **Basic Graphics**

College of Sciences (Stat & OR, KSU)


R programming

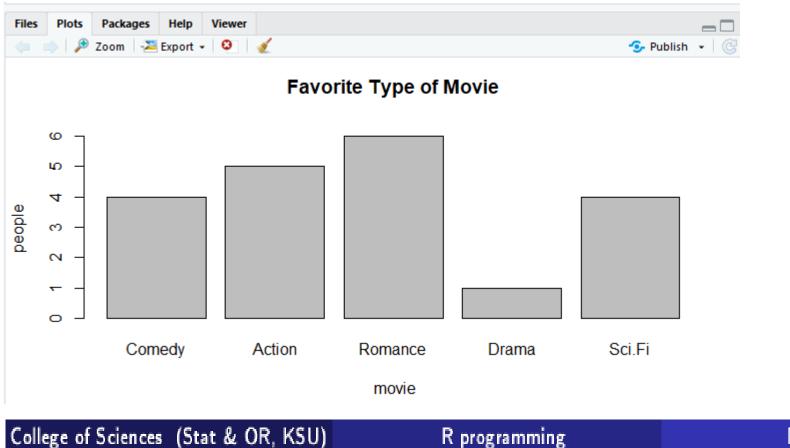


# 1- Bar Graph

is a graphical display of data using bars of different heights.

# **EXAMPLE**

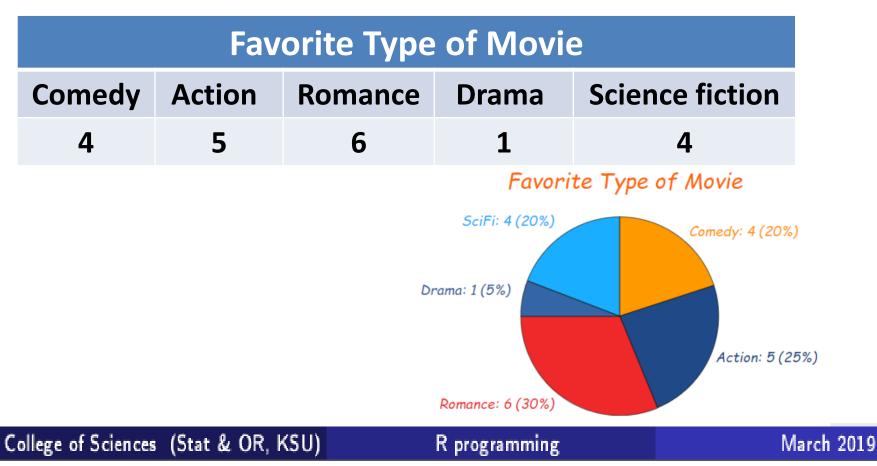



College of Sciences (Stat & OR, KSU)

R

barplot(H , xlab = , ylab= , main = ,names.arg )

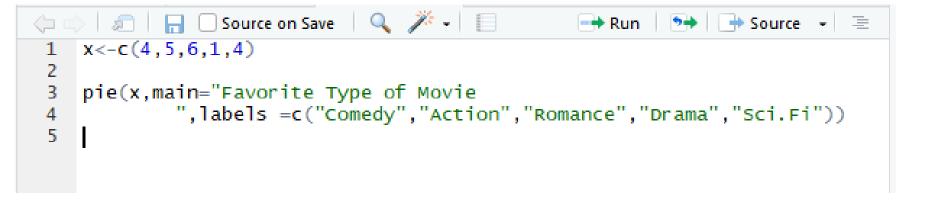
- H is a vector containing numeric values used in bar chart.
- xlab is the label for x axis.
- ylab is the label for y axis.
- main is the title of the bar chart.
- names.arg is a vector of names appearing under each bar.

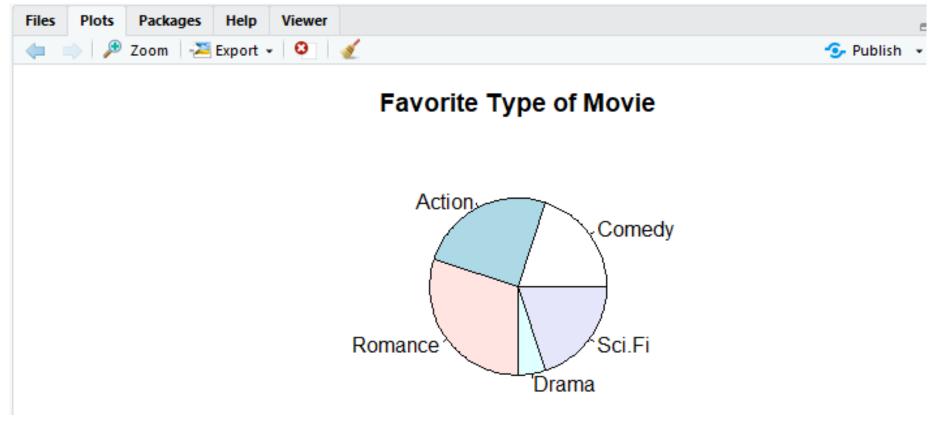

```
> Source on Save |  Fun  Source -
```



# 2- pie Graph

a special chart that uses "pie slices" to show relative sizes of data.


# **EXAMPLE**






## pie(x ,main= ,labels= )

- x is a vector containing the numeric values used in the pie chart.
- main indicates the title of the chart.
- Iabels is used to give description to the slices.





College of Sciences (Stat & OR, KSU)


### R programming

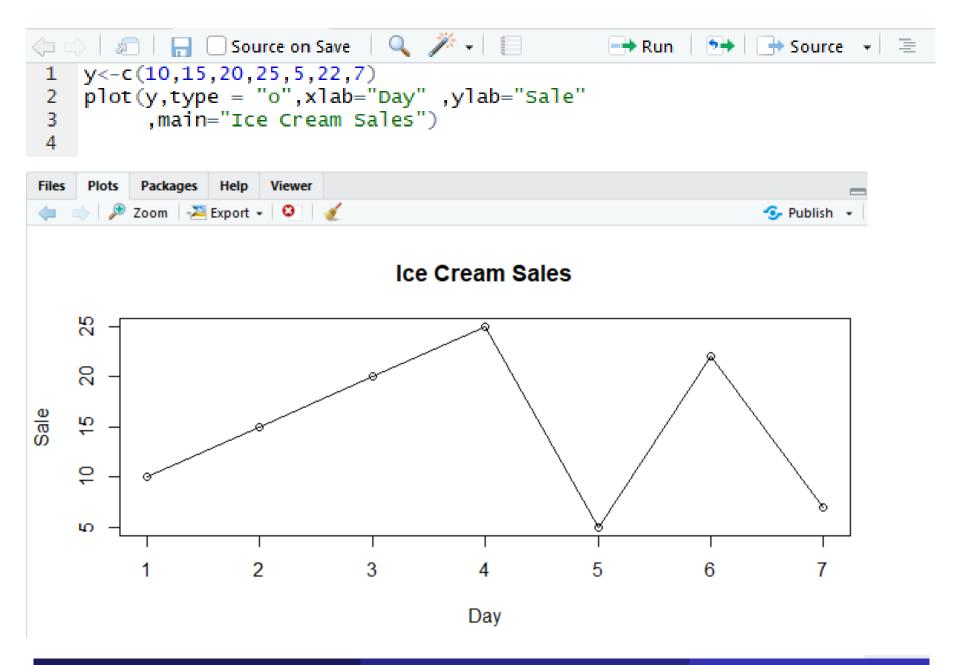
# 3- Line Graph:

a graph that shows information that is connected in some way (such as change over time)

# **EXAMPLE**

|     |     | lc  | e Crea | ım Sale | S   |     |
|-----|-----|-----|--------|---------|-----|-----|
| Mon | Tue | Wed | Thu    | Fri     | Sat | Sun |
| 10  | 15  | 20  | 25     | 5       | 22  | 7   |




College of Sciences (Stat & OR, KSU)

R programming



# plot(y ,type= ,xlab= ,ylab= ,main= )

- y is a vector containing the numeric values.
- type takes the value "p" to draw only the points, "I" to draw only the lines and "o" to draw both points and lines.
- xlab is the label for x axis.
- ylab is the label for y axis.
- main is the Title of the chart.

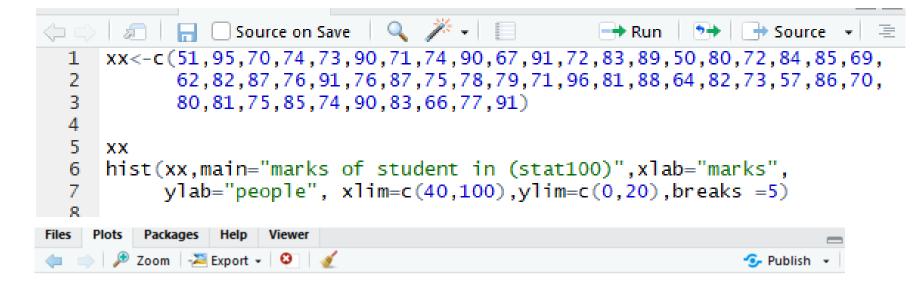


College of Sciences (Stat & OR, KSU)

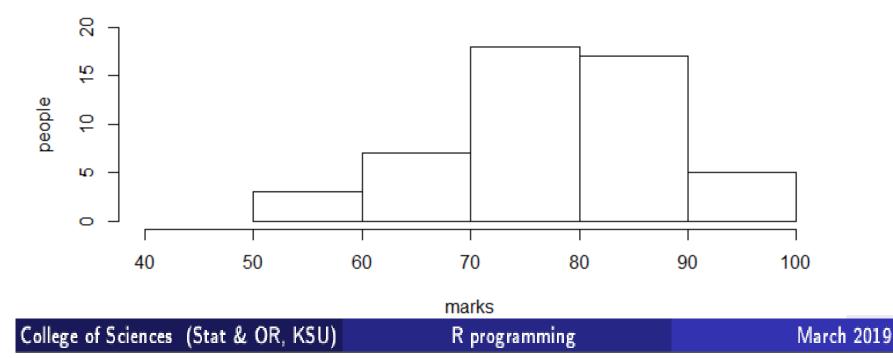
# 4- Histogram Graph

graphical display of data using bars of different heights.

## **EXAMPLE**


| 51 | 95 | 70  | 74 | 73 | 90 | 71 | 74 | <b>90</b> | 67 | ר 20                 |
|----|----|-----|----|----|----|----|----|-----------|----|----------------------|
| 04 | 70 | 0.2 |    | 50 | 00 | 70 |    | 05        | 60 | 18 -                 |
| 91 | 12 | 83  | 89 | 50 | 80 | 12 | 84 | 85        | 09 | 14 -                 |
| 62 | 82 | 87  | 76 | 91 | 76 | 87 | 75 | 78        | 79 | 12 -<br>10 -         |
| 74 | 06 | 04  |    | 64 | 00 | 70 | 67 | 06        | 70 | 8 -                  |
| 71 | 90 | 81  | 88 | 04 | 82 | 13 | 57 | 86        | 70 | 6 - 4 -              |
| 80 | 81 | 75  | 85 | 74 | 90 | 83 | 66 | 77        | 91 | 2                    |
|    |    |     |    |    |    |    |    |           |    | 0 50 60 70 80 90 100 |

College of Sciences (Stat & OR, KSU)

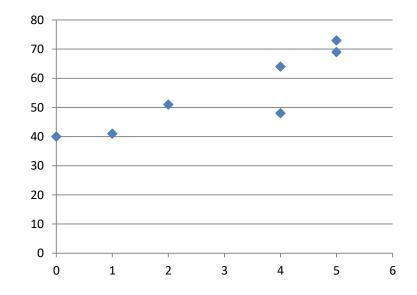



# hist(v ,main= ,xlab= ,ylab= ,xlim= ,ylim= , breaks = )

- v is a vector containing numeric values used in histogram.
- main indicates title of the chart.
- xlab is used to give description of x-axis.
- xlim is used to specify the range of values on the x-axis.
- ylim is used to specify the range of values on the y-axis.
- breaks is used to mention the width of each bar.



marks of student in (stat100)



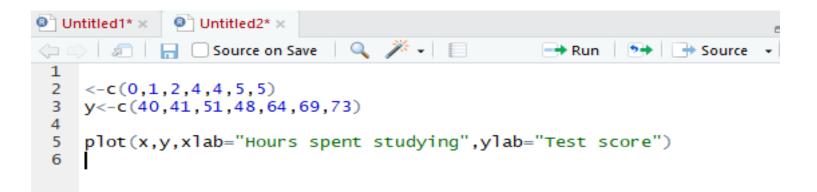

# 5- Scatter plot

Each point represents the values of two variables. One variable is chosen in the horizontal axis and another in the vertical axis.

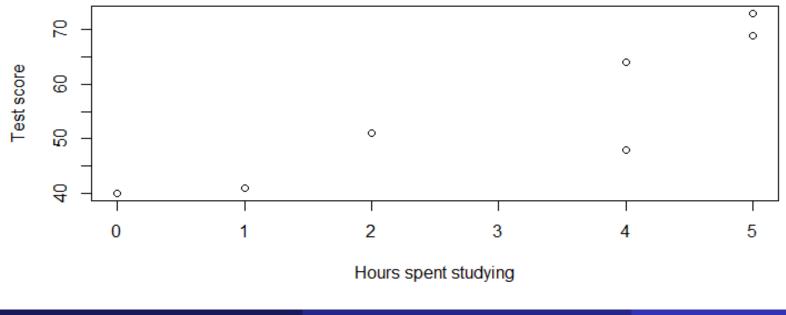
# EXAMPLE:

| Hours spent<br>studying, <i>x</i> | Test score, y |
|-----------------------------------|---------------|
| 0                                 | 40            |
| 1                                 | 41            |
| 2                                 | 51            |
| 4                                 | 48            |
| 4                                 | 64            |
| 5                                 | 69            |
| 5                                 | 73            |




## College of Sciences (Stat & OR, KSU)

### R programming




# plot(x , y , main= ,xlab= ,ylab= )

- x is the data set whose values are the horizontal coordinates.
- y is the data set whose values are the vertical coordinates.
- main is the tile of the graph.
- xlab is the label in the horizontal axis.
- ylab is the label in the vertical axis.



| Files | Plots | Packages | Help   | Viewer |                 |
|-------|-------|----------|--------|--------|-----------------|
| 4     | -> 🔎  | Zoom 🛛 🔁 | Export | • 🙂    | 💉 🥵 Publish 👻 🥝 |



College of Sciences (Stat & OR, KSU)

R programming

# **Simple Linear Regression**

 The results shown below were obtained in a small-scale experiment to study the relation between 0C of storage temperature (X) and number of weeks before flavor deterioration of a food product begins to occur (Y).

| i              | 1   | 2   | 3    | 4    | 5    |
|----------------|-----|-----|------|------|------|
| X <sub>i</sub> | 8   | 4   | 0    | -4   | -8   |
| Y <sub>i</sub> | 7.8 | 9.8 | 10.2 | 11.0 | 11.7 |

College of Sciences (Stat & OR, KSU)

Assume that first-order regression model ( $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ ) is applicable.

the command:

Y = matrix( c(7.8,9.0,10.2,11.0,11.7), nrow=5, ncol=1, byrow = TRUE)



## scatter plot

the command:

plot(X,Y)

College of Sciences (Stat & OR, KSU)

## R programming

# R

March 2019

## correlation

The command: cor(X,Y)

## linear regression model

The command:

model <- lm(Y~X)

summary(model)

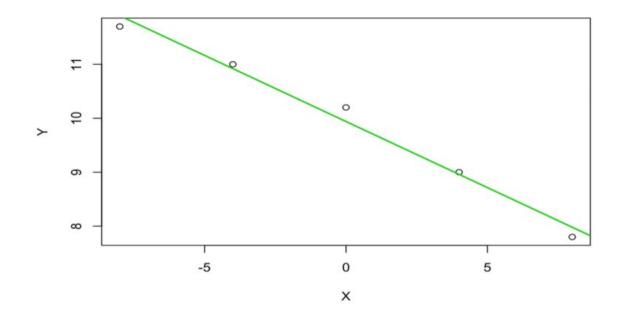
anova(model)

College of Sciences (Stat & OR, KSU)

```
model<-lm(Y~X)</pre>
```

summary(model)

```
##
## Call:
## lm(formula = Y ~ X)
##
## Residuals:
##
   1 2 3
                       4
                            5
## -0.18 0.04 0.26 0.08 -0.20
##
## Coefficients:
##
        Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.94000 0.09933 100.07 2.2e-06 ***
## X
        -0.24500 0.01756 -13.95 0.000797 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2221 on 3 degrees of freedom
## Multiple R-squared: 0.9848, Adjusted R-squared: 0.9798
## F-statistic: 194.7 on 1 and 3 DF, p-value: 0.0007971
```




## College of Sciences (Stat & OR, KSU)

### R programming

# Add a regression line to the plot and change color and line width

plot(X,Y)
abline(model)
abline(model, col=3,lwd=2)



College of Sciences (Stat & OR, KSU)

# Import data from excel to R



College of Sciences (Stat & OR, KSU)

## R programming



- 1- Open the Excel file containing your data: select and copy the data (ctrl + c)
- 2- Type the R code below to import the copied data from the clipboard into R and store the data in a data frame (Table):

| D      | С          | В        | Α      |    |
|--------|------------|----------|--------|----|
| salary | experanice | edulevel | gender | 1  |
| 500    | 1          | 1        | 1      | 2  |
| 450    | 2          | 1        | 2      | 3  |
| 440    | 1          | 1        | 1      | 4  |
| 500    | 3          | 1        | 2      | 5  |
| 570    | 2          | 2        | 1      | 6  |
| 550    | 3          | 2        | 2      | 7  |
| 490    | 2          | 2        | 2      | 8  |
| 540    | 3          | 2        | 2      | 9  |
| 600    | 2          | 2        | 1      | 10 |
| 650    | 3          | 2        | 1      | 11 |

|    | Table<-ı<br>Table | read.delin | n('clipboard | d')    |
|----|-------------------|------------|--------------|--------|
| >  |                   | edulevel   | experanice   | salary |
| 1  | 1                 | 1          | 1            | 500    |
| 2  | 2                 | 1          | 2            | 450    |
| 3  | 1                 | 1          | 1            | 440    |
| 4  | 2                 | 1          | 3            | 500    |
| 5  | 1                 | 2          | 2            | 570    |
| 6  | 2                 | 2          | 3            | 550    |
| 7  | 2                 | 2          | 2            | 490    |
| 8  | 2                 | 2          | 3            | 540    |
| 9  | 1                 | 2          | 2            | 600    |
| 10 | 1                 | 2          | 3            | 650    |
| >  |                   |            |              |        |

# Hypothesis testing

A statistical method that uses sample data to evaluate a hypothesis a bout a population parameter





# Testing about population mean

| Goal                                    | Test              |
|-----------------------------------------|-------------------|
| Compare one group to hypothetical value | One sample t-test |
| Compare two paired group                | Paired t-test     |
| Compare two unpaired group              | Two sample t-test |
| Compare three or more sample            | ANOVA             |

College of Sciences (Stat & OR, KSU)

## R programming



# One sample t test

Use the 1-sample t-test to estimate the mean of a population and compare it to a target or reference value when you do not know the standard deviation of the population, assuming the population to be approximately normal. Using this test, you can:

- Determine whether the mean of a group differs from a specified value.
- Calculate a range of values that is likely to include the population mean.

Example: Six students get scores of 62, 92, 75, 68, 83, and 95. Can the professor have 90 percent confidence that the mean score for the class on the test would be above 70

```
> t.test(x,mu=70,alternative = "two.sided",conf.level = 0.90)
One Sample t-test
data: x
t = 1.7053, df = 5, p-value = 0.1489
alternative hypothesis: true mean is not equal to 70
90 percent confidence interval:
68.33507 89.99827
sample estimates:
mean of x
79.16667
```

## College of Sciences (Stat & OR, KSU)

### R programming

# Two sample t-test

- Use the 2-sample t-test to two compare between two population means, when the variances are unknowns assuming the both population are independent and approximately normal
- There are two cases
- 1- population variances are unknown but equal.
- 2- population variances are unknown but unequal.

 Example: Below you can find the study hours of 6 female students and 5 male students.

| Female | 26 | 25 | 43 | 34 | 18 | 52 |  |
|--------|----|----|----|----|----|----|--|
| Male   | 23 | 30 | 18 | 25 | 28 |    |  |

# Is there a difference in average number of a study hours between male and female students.

## College of Sciences (Stat & OR, KSU)

### R programming

# **Paired Sample t Test**

- In paired sample hypothesis testing, a sample from the population is chosen and two measurements for each element in the sample are taken. Each set of measurements is considered a sample. the two samples are not independent of one another. Paired samples are also called matched samples or repeated measures.
- Use the Paired-sample t-test to compare between the means of paired observations taken from the same population. This can be very useful to see the effectiveness of a treatment on some objects.

• Example:

A clinic provides a program to help their clients lose weight and asks a consumer agency to investigate the effectiveness of the program. The agency takes a sample of 15 people, weighing each person in the sample before the program begins and 3 months later to produce the table below

Determine whether the program is effective?

| Weigh<br>t<br>before | 210 | 205 | 193 | 182 | 259 | 239 | 164 | 197 | 222 | 211 | 187 | 175 | 186 | 243 | 246 |
|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Weight<br>after      | 197 | 195 | 191 | 174 | 236 | 226 | 157 | 196 | 201 | 196 | 181 | 164 | 181 | 229 | 231 |



March 2019

```
> x1<-c(210,205,193,182,259,239,164,197,222,211,187,175,186,243,246)
> y1<-c(197,195,191,174,236,226,157,196,201,196,181,164,181,229,231)
> t.test(x1,y1,alternative = "greater",mu=0,paired =TRUE, conf.level = 0.95
)
```

```
Paired t-test
```

College of Sciences (Stat & OR, KSU)

# Analysis of variance (ANOVA)

- The one-way analysis of variance (ANOVA) is used to determine whether there are any statistically significant differences between the means of three or more independent (unrelated) groups.
- Treatment population are normally distributed equal variances

 Example: Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize cars, and fullsize cars. It collects a sample of three for each of the treatments (cars types). Using the hypothetical data provided below, test whether the mean pressure applied to the driver's head during a crash test is equal for each types of

| car. | Use | α = | 5%. |
|------|-----|-----|-----|
|      |     |     |     |

|            | <b>Compact cars</b>   | Midsize cars  | Full size cars |
|------------|-----------------------|---------------|----------------|
|            | 643                   | 469           | 484            |
|            | 655                   | 427           | 456            |
|            | 702                   | 525           | 402            |
|            |                       |               |                |
| e of Scier | nces (Stat & OR, KSU) | R programming |                |



```
> z1<-c(643,655,702)
> z2 < -c(469, 427, 525)
> z3 < -c(484, 456, 402)
> y=c(z1,z2,z3)
> n = rep(3, 3)
> group=rep(1:3,n)
> data=data.frame(y=y,group=factor(group))
> fit=lm(y~group,data)
> anova(fit)
Analysis of Variance Table
Response: y
          Df Sum Sq Mean Sq F value Pr(>F)
           2 86050
                      43025 25.175 0.001207 **
group
Residuals 6 10254
                       1709
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
```