# King Saud University Department of Mathematics 

## Final Exam

$1^{\text {st }}$ semester 1437 H
Course Title: Math 244 (Linear Algebra)
Date: Tuesday 5 January 2016; (8-11) am
$\qquad$
(......) Name ID

Section

Lecturer $\qquad$

| Question | Grade |
| :---: | :---: |
| Q1 |  |
| Q2 |  |
| Q3 |  |
| Q4 |  |
| Total |  |


| Part I | (a) | (b) | (c) | (d) | (e) | (f) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Answer |  |  |  |  |  |  |

## Question 1

I. Choose the correct answer (write it down on the table above):
(a) The dimension of $M_{2 \times 2}(R)$, the vector space of all $2 \times 2$ matrices of real numbers, is
(i) 2
(ii) 4
(iii) 0
(iv) None.
(b) The reflection of $(2,-5,3)$ about the $y z$-plane is
(i) $(2,5,3)$
(ii) $(-2,-5,3)$
(iii) $(-2,-5,-3)$
(iv) None.
(c) The nullity of $\left[\begin{array}{cccc}1 & -3 & 2 & 5 \\ -2 & 6 & 0 & -3 \\ 4 & -12 & -4 & -1\end{array}\right]$ is
(i) 1
(ii) 3
(iii) 2
(iv) None
(d) $T_{1} \circ T_{2}$ in $R^{3}$ where $T_{1}$ is the rotation of $90^{\circ}$ about the $y-$ axis and $T_{2}$ is a reflection about the $x z$-plane is
(i) $\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]$
(ii) $\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]$
(iii) $\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0\end{array}\right]$
(iv) None.
(e) If $u=(1,2,-3)$; $v=(3,-3,5)$ and $w=(0,-1,-3)$ then $(u \cdot v)-w$ is
(i) 22
(ii) $(18,17,15)$
(iii) $(18,19,21)$
(iv) None
(f) Let $T_{A}: R^{3} \rightarrow R^{3}$ be multiplication by $A=\left[\begin{array}{ccc}4 & -1 & -2 \\ 5 & 1 & 2 \\ -3 & 6 & -4\end{array}\right]$ and let $e_{1}, e_{2}$ and $e_{3}$ be the standard basis vectors for $R^{3}$, then $T_{A}\left(e_{1}+e_{2}+e_{3}\right)$ is
(i) $\left[\begin{array}{c}1 \\ 8 \\ -1\end{array}\right]$
(ii) $\left[\begin{array}{c}-1 \\ 8 \\ 1\end{array}\right]$
(iii) $\left[\begin{array}{l}1 \\ 8 \\ 1\end{array}\right]$
(iv) None
II. Determine wether the following is true or false.
(a) If $V=\operatorname{span}\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$, then $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is a basis for $V$.
(b) If $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly independent set in $R^{3}$ then it is a basis for $R^{3}$. [ ]
(c) If $R$ is the reduced echelon form of a matrix $A$, then those column vectors of $R$ that contain the leading $1 s^{\prime}$ form a basis for the column space of $A$.
(d) The system $A \mathbf{x}=\mathbf{b}$ is inconsistent if and only if $\mathbf{b}$ is not in the column space of $A$.
(e) If $A=\left[a_{i j}\right]_{n \times n}$ and $T_{A}: R^{n} \rightarrow R^{n}$ is the corresponding matrix operator then $T_{A}$ is one-to-one if and only if the range of $T_{A}$ is $R^{n}$.
(f) The eigenvalues of a matrix $A$ are the same as the eigenvalues of the row echelon form of $A$.
(g) For every $A=\left[a_{i j}\right]_{n \times n}, A \cdot \operatorname{adj}(A)=(\operatorname{det}(A)) I$.
(h) If $A^{2}$ is a symmetric matrix then $A$ is a symmetric matrix.
(i) If the reduced row echelon form of an augmented matrix for a linear system has a row of zeros, then the system must have infinitely many solutions.
(j) $W=\left\{(x, y) \in R^{2}, x^{2}=y^{2}\right\}$ is a subspace of $R^{2}$.

## Question 2

(a) (i) If $A$ is a nonsingular (invertible) matrix whose inverse is $\left[\begin{array}{ll}2 & 1 \\ 4 & 1\end{array}\right]$, find $A$.
(ii) Show that $p(t)=-t^{2}+t-4$ belongs to the $\operatorname{span}\left\{t^{2}+2 t+1, t^{2}, t-1\right\}$.
(iii) Find the row and column rank of $A=\left[\begin{array}{ccccc}1 & 1 & -1 & 2 & 0 \\ 2 & -4 & 0 & 1 & 1 \\ 5 & -1 & -3 & 7 & 1 \\ 3 & -9 & 1 & 0 & 2\end{array}\right]$.
(b) (i) If $W=\left\{X \in M_{2 \times 2}(R): A X=X A\right\} \subseteq M_{2 \times 2}(R)$, where $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$. Show that $W$ is a subspace of $M_{2 \times 2}(R)$.
(ii) (1.) Find a subset of the vectors that forms a basis for the space spanned by the vectors: $v_{1}=(1,-2,0,3) ; v_{2}=(2,-4,0,6) ; v_{3}=(0,-1,2,3)$.
(2.) Express each vector that is not in the basis as a linear combination of the basis vectors.

## Question 3

(a) Let

$$
A=\left[\begin{array}{ccr}
7 & 0 & -3 \\
-9 & -2 & 3 \\
18 & 0 & -8
\end{array}\right]
$$

(i) Compute the eigenvalues of $A$.
(ii) Find the bases for the eigenspaces of $A$.
(b) (i) Show that the matrix operator $T: R^{3} \rightarrow R^{3}$ defined by the equations:

$$
\begin{aligned}
x_{1}-2 x_{2}+2 x_{3} & =w_{1} \\
2 x_{1}+x_{2}+x_{3} & =w_{2} \\
x_{1}+x_{2} & =w_{3}
\end{aligned}
$$

is one-to-one.
(ii) Find the standard matrix for the inverse operator.
(iii) Find $T^{-1}\left(w_{1}, w_{2}, w_{3}\right)$.

## Question 45 marks Bonus

1. (i) Show that the vectors $u=(1,-5,4)$ and $v=(3,3,3)$ are orthogonal.
(ii) Verify the theorem of Pythagoras $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$ for $u$ and $v$.
2. Let $C=\left[\begin{array}{cc}4 & 3 \\ 0 & -2\end{array}\right]$. Find the eigenvalues of $C^{3}$.
3. Find the vector $v=\left(v_{1}, v_{2}, v_{3}\right)$ in $R^{3}$ whose coordinate vector relative to the basis

$$
S=\{(3,2,1),(-2,1,0),(5,0,0)\}
$$

is $(v)_{S}=(-1,3,2)$.

