King Saud University

Math 244

King Saud University Department of Mathematics

Final Exam								
1 st semester 1437 H Course Title: Math 244 (Linear Algebra)								
() Nan	ne		. ID	Section				
Lecturer								
		_						
Question	Grade							
01		-						
Q1								

 $\overline{Q2}$

Q3

Q4

Total

Part I	(a)	(b)	(c)	(d)	(e)	(f)
Answer						

Question 1

- I. Choose the correct answer (write it down on the table above):
 - (a) The dimension of $M_{2\times 2}(R)$, the vector space of all 2×2 matrices of real numbers, is
 - (i) 2
 - (ii) 4
 - (iii) 0
 - (iv) None.
 - (b) The reflection of (2, -5, 3) about the yz plane is
 - (i) (2,5,3)
 - (ii) (-2, -5, 3)
 - (iii) (-2, -5, -3)
 - (iv) None.
 - (c) The nullity of $\begin{bmatrix} 1 & -3 & 2 & 5 \\ -2 & 6 & 0 & -3 \\ 4 & -12 & -4 & -1 \end{bmatrix}$ is
 - (i) 1
 - (ii) 3
 - (iii) 2
 - (iv) None
 - (d) $T_1 \circ T_2$ in R^3 where T_1 is the rotation of 90° about the y axis and T_2 is a reflection about the xz plane is
 - (i) $\begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
 - (ii) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$
 - (iii) $\begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$
 - (iv) None.

- (e) If u = (1, 2, -3); v = (3, -3, 5) and w = (0, -1, -3) then $(u \cdot v) w$ is
 - (i) 22
 - (ii) (18, 17, 15)
 - (iii) (18, 19, 21)
 - (iv) None
- (f) Let $T_A: R^3 \to R^3$ be multiplication by $A = \begin{bmatrix} 4 & -1 & -2 \\ 5 & 1 & 2 \\ -3 & 6 & -4 \end{bmatrix}$ and let e_1, e_2 and e_3 be the standard basis vectors for R^3 , then $T_A(e_1 + e_2 + e_3)$ is
 - $\begin{array}{c|c}
 (i) & \begin{bmatrix} 1 \\ 8 \\ -1 \end{bmatrix}
 \end{array}$
 - (ii) $\begin{bmatrix} -1\\8\\1 \end{bmatrix}$
 - (iii) $\begin{bmatrix} 1\\8\\1 \end{bmatrix}$
 - (iv) None

King Saud University

Math 244

(a) If $V = span\{v_1, v_2, \dots, v_n\}$, then $\{v_1, v_2, \dots, v_n\}$ is a basis for V.

- (b) If $S = \{v_1, v_2, v_3\}$ is a linearly independent set in \mathbb{R}^3 then it is a basis for \mathbb{R}^3 .
- (c) If R is the reduced echelon form of a matrix A, then those column vectors of R that contain the leading 1s' form a basis for the column space of A.
- (d) The system $A\mathbf{x} = \mathbf{b}$ is inconsistent if and only if \mathbf{b} is not in the column space of A.
- (e) If $A = [a_{ij}]_{n \times n}$ and $T_A : \mathbb{R}^n \to \mathbb{R}^n$ is the corresponding matrix operator then T_A is one-to-one if and only if the range of T_A is \mathbb{R}^n .
- (f) The eigenvalues of a matrix A are the same as the eigenvalues of the row echelon form of A.
- (g) For every $A = [a_{ij}]_{n \times n}$, $A \cdot adj(A) = (\det(A))I$. [
- (h) If A^2 is a symmetric matrix then A is a symmetric matrix.
- (i) If the reduced row echelon form of an augmented matrix for a linear system has a row of zeros, then the system must have infinitely many solutions.
- (j) $W = \{(x, y) \in \mathbb{R}^2, x^2 = y^2\}$ is a subspace of \mathbb{R}^2 . [

Question 2

(a) (i) If A is a nonsingular (invertible) matrix whose inverse is $\begin{bmatrix} 2 & 1 \\ 4 & 1 \end{bmatrix}$, find A.

(ii) Show that $p(t) = -t^2 + t - 4$ belongs to the $span\{t^2 + 2t + 1, t^2, t - 1\}$.

(iii) Find the row and column rank of
$$A = \begin{bmatrix} 1 & 1 & -1 & 2 & 0 \\ 2 & -4 & 0 & 1 & 1 \\ 5 & -1 & -3 & 7 & 1 \\ 3 & -9 & 1 & 0 & 2 \end{bmatrix}$$
.

(b) (i) If $W = \{X \in M_{2\times 2}(R) : AX = XA\} \subseteq M_{2\times 2}(R)$, where $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. Show that W is a subspace of $M_{2\times 2}(R)$.

(ii) (1.) Find a subset of the vectors that forms a basis for the space spanned by the vectors: $v_1 = (1, -2, 0, 3)$; $v_2 = (2, -4, 0, 6)$; $v_3 = (0, -1, 2, 3)$.

(2.) Express each vector that is not in the basis as a linear combination of the basis vectors.

Question 3

(a) Let

$$A = \begin{bmatrix} 7 & 0 & -3 \\ -9 & -2 & 3 \\ 18 & 0 & -8 \end{bmatrix}$$

- (i) Compute the eigenvalues of A.
- (ii) Find the bases for the eigenspaces of A.

King Saud University

Math 244

(b) (i) Show that the matrix operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by the equations:

$$x_1 - 2x_2 + 2x_3 = w_1$$
$$2x_1 + x_2 + x_3 = w_2$$
$$x_1 + x_2 = w_3$$

is one-to-one.

- (ii) Find the standard matrix for the inverse operator.
- (iii) Find $T^{-1}(w_1, w_2, w_3)$.

Question 4 5 marks Bonus

- 1. (i) Show that the vectors u = (1, -5, 4) and v = (3, 3, 3) are orthogonal.
 - (ii) Verify the theorem of Pythagoras $||u+v||^2 = ||u||^2 + ||v||^2$ for u and v.

2. Let $C = \begin{bmatrix} 4 & 3 \\ 0 & -2 \end{bmatrix}$. Find the eigenvalues of C^3 .

3. Find the vector $v = (v_1, v_2, v_3)$ in \mathbb{R}^3 whose coordinate vector relative to the basis

$$S = \{(3,2,1), (-2,1,0), (5,0,0)\}$$

is
$$(v)_S = (-1, 3, 2)$$
.