Page: 1

Lecture 1

Date: / /

Day:

4.1 Anti-derivatives

Definition: A function F is called an anti-derivative of f on an interval I if

$$F^{'}(x) = f(x)$$

for every $x \in I$

Example: Let $F(x) = x^2$ and f(x) = 2x,

then F'(x) = 2x = f(x).

This means F'(x) is an anti-derivative of f(x) = 2x.

Note: There are many anti-derivatives of f(x). From the previous example,

$$f(x) = 2x$$
, the functions

$$F(x) = x^2 + 2$$

$$F(x) = x^2 - \frac{1}{2}$$

$$F(x) = x^2 - \sqrt{2}$$

$$F(x) = x^2 + c$$

where c is constant.

Relationship between two different anti-derivatives of a function:

Let F and G be two anti-derivatives of f on an interval I, then

$$F(x) = G(x) + c$$

$$G(x) = F(x) + c$$

Example: Let F(x) = sin(x) and G(x) = sin(x) + 2 and let f(x) = cos(x). Clearly, F and G are two anti-derivatives of f and F(x) = G(x) - 2.

Indefinite Integrals:

The form of the indefinite integral is $\int f(x) dx = F(x) + c$ where

 $\int f(x) dx$ is indefinite integral of f(x),

f(x) is the integrand,

x is the variable of the integration and

c is constant of the integral.

Derivative	Indefinite Integrals
$\frac{d}{dx}(x) = 1$	$\int 1 \ dx = x + c$
$\frac{d}{dx}\left(\frac{x^{n+1}}{n+1}\right) = 1, \ n \neq 1$	$\int x^n \ dx = \frac{x^{n+1}}{n+1} + c$
$\frac{d}{dx}(\sin x) = \cos x$	$\int \cos dx = \sin x + c$
$\frac{d}{dx}(-\cos x) = \sin x$	$\int \sin x dx = -\cos x + c$
$\frac{d}{dx}(\tan x) = \sec^2 x$	$\int \sec^2 x dx = \tan x + c$
$\frac{d}{dx}(-\cot x) = \csc^2 x$	$\int \csc^2 x dx = -\cot x + c$
$\frac{d}{dx}(\sec x) = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + c$
$\frac{d}{dx}(-\csc x) = \csc x \cot x$	$\int \csc x \cot x dx = -\csc x + c$

Some Important Formulas:

- 1) $\int \frac{d}{dx} (f(x)) dx = f(x) + c$
- 2) $\frac{d}{dx} \int f(x) dx = f(x)$ 3) $\int cf(x) dx = c \int f(x) dx$
- 4) $\int [f(x) \pm g(x)] dx = \int f(x) \pm \int g(x) dx$

Exercise: Evaluate the following integrals:

1) $\int 4x + 3 \ dx$

2) $\int \frac{4}{x^5} + \frac{2}{x^2} + x \ dx$

Day:

4.1 Anti-derivatives

Exercise 2: Evaluate the following integrals

$$(1) \int (\sqrt{x} + \frac{1}{2\sqrt{x}}) dx$$

 $(2) \int (3\sin x + 2\cos x) \ dx$

 	• • • • • • • • • • • • • • • • • • • •	
 	• • • • • • • • • • • • • • • • • • • •	

 $(3) \int (x+1)^5 dx$

• • •	• • •	• • •	• • •	•••	• • • •	•••	•••	• • • •	• • • •	•••	• • • •	•••	•••	• • • •	• • • •	•••	•••	• • • •	• • • •	• • • •	•••	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	••••	• • • • • •	
• • •	• • •		• • •	•••		• • •	•••	• • • •		•••	• • • •	•••	•••	• • • •	• • • •	•••	• • • •			• • • •	•••	• • • •	• • • •	• • • •		• • • •	• • • •		• • • •		
• • •	• • •	• • •	• • •	•••	• • • •	•••	•••	• • • •	• • • •	•••	• • • •	•••	•••	• • • •	• • • •	•••	•••	• • • •	• • • •	• • • •	•••	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	••••	• • • • • •	
	• • •	• • •	• • •	• • •				• • • •		• • •	• • • •	• • • •	• • •	• • • •		• • •	• • • •		• • • •	• • • •	• • •	• • • •	• • • •		• • • •	• • • •	• • • •		• • • • •		

- (4) $\int x \sin x^2 dx dx$
- (5) $\int (3x+1)^4 dx$
- (6) $\int (2x^3+1)^7 (6x^2) dx$

Exercise: Solve the differential equation $f'(x) = 6x^2 + x - 5$ subject to the initial condition f(0) = 2.

Solution:

$$\int f'(x) \ dx = \int (6x^2 + x - 5) \ dx$$

$$f(x) = 2x^3 + \frac{1}{2}x^2 - 5x + c$$

Let x = 0 and use the condition f(0) = 2. $f(0) = 0 + 0 - 0 + c \Rightarrow c = 2$.

The solution of the differential equation is $f(x) = 2x^3 + \frac{1}{2}x^2 - 5x + 2$.

Exercise: Solve the differential equation $f''(x) = 5\cos x + 2\sin x$ subject to the initial condition f(0) = 3 and f'(0) = 4.

Solution:

$$\int f''(x) \ dx = \int (5\cos x + 2\sin x) \ dx$$

$$f'(x) = 5\sin x - 2\cos x + c$$

Let x = 0 and use the condition f'(0) = 3.

$$f'(0) = 5\sin 0 - 2\cos 0 + c \Rightarrow c = 6$$
. Hence

$$f'(x) = 5\sin x - 2\cos x + 6$$

We integrate a second time:

$$\int f'(x) \ dx = \int (5\sin x - 2\cos x + 6) \ dx$$

$$f(x) = -5\cos x - 2\sin x + 6x + c$$

Let x = 0 and use the condition f(0) = 4.

$$f'(0) = -5\cos 0 - 2\sin 0 + 6(0) + c \Rightarrow c = 8$$
. Hence, the solution is

$$f(x) = -5\cos x - 2\sin x + 6x + 8.$$

Page: 1

Lecture 2

Date: / /

Day:

4.2 Change of a Variable in Indefinite Integral (Substitution Method)

Exercise: Evaluate the following integrals:

$$1) \int (x+1) \ dx =$$

2)
$$\int (x+1)^2 dx =$$

3)
$$\int (3x+1)^4 dx =$$

Here, we can't do the integration without the derivative of
$$3x$$
, so we use the substitution method.

The substitution method can be summarized in the following formula:

$$\int [f]^n f' dx = \frac{[f]^{n+1}}{n+1} + c, n \neq -1$$

To find the previous integration, we let $u = 3x + 1 \Rightarrow du = 3dx \Rightarrow \frac{1}{3}du = dx$.

By substituting that into the integral, we have $\frac{1}{3}\int u^4\ du=\frac{1}{3}\frac{u^5}{5}+c=\frac{u^5}{15}+c$

Then,
$$\int (3x+1)^4 dx = \frac{1}{3} \frac{(3x+1)^5}{5} + c = \frac{(3x+1)^5}{15} + c$$

Alternatively, we multiple and divide the integral by $3 \frac{1}{3} \int 3 (3x+1)^4 dx = \frac{(3x+1)^5}{15} + c$.

4)
$$\int (4x+1)^n dx$$

To do the integral, we the derivative of 4x.

Let
$$u = 4x + 1 \Rightarrow \frac{1}{4} du = dx$$
, by substituting

$$\frac{1}{4} \int u^n \ dx = \frac{u^{n+1}}{n+1} + c$$

But,
$$u = 4x + 1$$
, the value of the integral is $\frac{(4x+1)^{n+1}}{n+1} + c$

Remember

$$\int x^n dx =$$

$$\frac{x^{n+1}}{n+1} + c$$

Exercise: Evaluate the following integrals:
1) $\int x^2 (2x^3 + 1)^7 dx$
2) $\int 3x^2 (7x^3 + 1)^{10} dx$
$3) \int \frac{(\sqrt{x}+3)^4}{\sqrt{x}} dx$

Lecture 2	Date: / /	Day:	4.2 Change of a Variable in Indefinite Integral (Substitution Method)
$4) \int \sqrt{x} \cos \sqrt{x^3} dx$	dx		7) $\int (x^2 + 2) \sqrt{x^3 + 6x} dx$
5) $\int 3 \cos 6x dx$			8) $\int \frac{x \cos(x^2+2)}{\sqrt{\sin(x^2+2)}} dx$
			9) $\int \frac{\cos x}{\sqrt{4x^2-x^2}} dx$
$6) \int \frac{4}{\cos^2 4x} dx$			9) $\int \frac{\cos x}{\sqrt{4+\sin x}} dx$ (a) $\frac{1}{2}\sqrt{\sin x + 4} + c$ (b) $\sqrt{\sin x + 4} + c$ (c) $2\sqrt{\sin x + 4} + c$ (d) $-2\sqrt{\sin x + 4} + c$

Page: 1

Lecture 3

Date: / /

Day:

4.3 Summation Notation

Let $\{a_1, a_2, ..., a_n\}$ be a set of numbers, the symbol $\sum_{k=1}^n a_k$ represents their sum:

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + \dots + a_n$$

Example: Evaluate the following

$$(1) \sum_{k=1}^{3} (k+1)k^2$$

$$\sum_{k=1}^{3} (k+1)k^2 = (2)(1)^2 + (3)(2)^2 + (4)(3)^2 = 2 + 12 + 36 = 50$$

(2)
$$\sum_{j=1}^{4} (j^2 + 1)$$

Theorem:

(1)
$$\sum_{k=1}^{n} c = c + c + \dots + c = nc$$
.

(2)
$$\sum_{k=1}^{n} (a_k \pm b_k) = \sum_{k=1}^{n} a_k \pm \sum_{k=1}^{n} b_k$$
.

(3)
$$\sum_{k=1}^{n} c \ a_k = c \ \sum_{k=1}^{n} a_k$$
 for any $c \in \mathbb{R}$.

(4)
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

(5)
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

(6)
$$\sum_{k=1}^{n} k^3 = \left[\frac{n(n+1)}{2}\right]^2$$

(7)
$$\sum_{k=1}^{n} k^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

Exercise 1: Evaluate the following (1) $\sum_{k=1}^{10} 3$
$(2) \sum_{k=1}^{20} k^2$
$(3) \sum_{k=1}^{10} k^3$
Exercise 2: Express the following sum in terms of n : $\sum_{k=1}^{n} (k^3 + k^2 + 3k + 5)$
Exercise 3: Choose the correct answer
1) If $\sum_{k=1}^{4} (k+a) = 14$, then the value of a is equal to:
(a) 1 (b) 4 (c) -4 (d) -1

.....

.....

.....

.....

.....

.....

M-106 Calculus	Integration	CI	HAPTER: 4	Page: 2
Lecture 3	Date: / /	Day:	4.3 Summation Notation	
====================================	$=\frac{n^2}{2}$ $(n \ge 1)$, then the value	ue of α is equal to:	4) $\sum_{k=1}^{n} (k^2 + 3k + 2\alpha) = 13$	α , then α is equal to
(a) $-\frac{n}{2}$ (b) $\frac{1}{2}$	(c) $-\frac{1}{2}$ (d) 1		(a) 2 (b) -2 (c) 1	(d) 3
3) The sum $\sum_{k=1}^{n^2}$	(k-1), is equal to:		5) $\sum_{k=1}^{5} (\alpha k^2 + k - 1) = 20,$	then α is equal to
(a) $\frac{n^2(n-1)}{2}$ (b)) $\frac{n(n-1)}{2}$ (c) $\frac{n^2(n^2+1)}{2}$	(d) $\frac{n^2(n^2-1)}{2}$	(a) $\frac{2}{11}$ (b) $\frac{-2}{11}$ (c) $\frac{1}{11}$	(d) $\frac{-1}{11}$

M-106 Calculus Integration

CHAPTER: 4

Page:	1

Lecture 4

Date: / /

Day:

4.4 Riemann Sums, Area and Definite Integrals

Definition:

(1) A partition P of a closed interval [a,b] is decomposition of the interval into subintervals of form

$$[x_0, x_1], [x_1, x_2], [x_2, x_3], ..., [x_{n-1}, x_n]$$

for any a positive integer n such that $a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n$

Sub-intervals	Length
First interval = $[x_0, x_1]$	$\Delta x_1 = x_1 - x_0$
Second interval = $[x_1, x_2]$	$\Delta x_2 = x_2 - x_1$
Third interval = $[x_2, x_3]$	$\Delta x_3 = x_3 - x_2$
n-th interval = $[x_{n-1}, x_n]$	$\Delta x_n = x_n - x_{n-1}$

(2) Norm of partition is (|| P ||) is the largest number of $\Delta x_1, \Delta x_2, ..., \Delta x_n$.

Example: Let $P = \{0, 1.1, 2.6, 3.7, 4.1, 5\}$ be a partition of the interval [0, 5].

- (1) Find the length of each sub-intervals.
- (2) Find the norm ||P||.

Solution:

Sub-intervals	Length
First interval $= [0, 1.1]$	$\Delta x_1 = 1.1 - 0 = 1.1$
Second interval =	
Third interval =	
Fourth interval =	
Fifth interval =	

(2) The norm ||P|| = 1.5.

Riemann Sum

Let f be a defined function on the closed interval [a,b] and let $P = \{x_0, x_1, ..., x_n\}$ be a partition of [a,b]. Let $w_k \in [x_{k-1}, x_k], \ k = 1, 2, 3, ..., n$. Then a Riemann sum of f for P is

$$R_p = \sum_{k=1}^n f(w_k) \Delta x_k.$$

Example: Find the Riemann sum R_p for the function f(x) = 3 - 4x on the partition $P = \{-1, 0, 2, 4, 6\}$ of the interval [-1, 6] by choosing

- (i) the left-hand end point.
- (ii) the right-hand end point.
- (iii) the mid point.

Solution:

Sub-intervals	Length
First interval = $[-10, 0]$	$\Delta x_1 = 0 - (-1) = 1$
Second interval =	
Third interval =	
Fourth interval =	

(1) The left-hand end point.
$w_1 = -1, \ w_2 = 0, w_3 = -2, \ w_4 = 4$
$R_p = \sum_{k=1}^n f(w_k) \Delta x_k = f(-1)(1) + f(0)(2) + f(2)(2) + f(4)(2)$
7 + (2)(2) + (-5)(2) + (-12)(2) = 22

(ii) The right-hand end	I point.	
•••••		•••••

(iii)	Th	e i	mi	d I	ooi	nt.	. (Ex	œı	ci	se	(!)																	
	• • • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	•••	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • •	• • •	• • • •	• • •	• • • •	• • • •	•••	• • • • •	
	• • • • •	• • • •	• • • •	• • • •	•••	• • • •	• • • •	• • • •	• • • •	•••	• • • •	• • • •		• • • •	• • • •	• • • •	• • • •		• • • •		• • • •	•••	• • •	• • • •	• • •		• • • •	•••	• • • • •	

M-106	Calculus	Integration
111 100	Carcaras	THICSTANIOH

Page: 2

Lecture 4	Date: / /	Day:	4.4 Riemann Sums, Area and Definite Integrals
Exercise 1: Let A	====================================	raph of $f(x) = x^2 + 1$	
		king limit of Riemann sum.	
			Exercise 2: Choose the correct answer
			The limit $\lim_{n\to\infty}\sum_{k=1}^n \left(\frac{k}{n^2}\right)$
			(a) 0 (b) ∞ (c) 2 (d) $\frac{1}{2}$

M-106	Calculus	Integration
M-100	Calculus	integration

ъ
Page:

Lecture 5	Date: / /	Day:	4.4 Riemann Sums, Area and Definite Integrals	
Definite Integra	======================================		$(4) \int_{-1}^{4} x dx$	
Let f be a function from a to b is	on defined on closed inter	val $[a, b]$. The definite integra	$\int_{-1}^{4} \int_{-1}^{1} \int_{-1}^{1$	
	ch	n		
	$\int_{a}^{b} f(x) \ dx = \lim_{ P \to 0}$	$\sum_{k=1} f(w_k) \Delta x_k$		
The numbers a and	ad b are called the limits of	f integration.		
Example: Evalua	ate the following integrals			
$(1) \int_{1}^{4} x^{2} + 1 \ dx$			(5) $\int_0^2 x-1 dx$	
$(2) \int_0^2 \sqrt{4x+1} \ dx$			(6) $\int_0^{\frac{\pi}{2}} \sin x + \cos x dx$	
•••••				
	•••••			
				•••••
			π	
$(3) \int_0^3 x^3 (x^4 - 1) dx^4 = 0$	dx		$(7) \int_0^{\frac{\pi}{4}} \sec^2 x - 1 \ dx$	

Date: / /

Day:

4.5 Properties of Definite Integrals

In the following, we give some important properties of definite integrals.

- $(1) \int_a^b f(x) \ dx = -\int_b^a f(x) \ dx$
- (2) If f(a) exists, $\int_a^a f(x) dx = 0$
- (3) $\int_{a}^{b} c \, dx = c(b-a)$
- (4) If f is integrable on [a, b] and $c \in \mathbb{R}$, then

$$\int_{a}^{b} c f(x) dx = c \int_{a}^{b} f(x) dx$$

- (5) $\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$
- (6) If $c \in [a, b]$ and f is integrable on [a, c] and [c, b], then f is integrable on [a, b] and

$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx$$

- (7) If f is integrable on [a, b] and $f(x) \ge 0$, $x \in [a, b]$, then $\int_a^b f(x) \ge 0$.
- (8) If f and g are integrable on [a,b] and $f(x) \geq g(x)$ for every $x \in [a,b]$, then

$$\int_{a}^{b} f(x) \ge \int_{a}^{b} g(x)$$

Example: Evaluate the following integrals

 $(1) \int_0^2 3 \ dx$

.....

(2) $\int_2^2 x^2 + 4 \ dx$

.....

(3) If $\int_0^2 f(x) dx = 4$ and $\int_0^2 g(x) dx = 2$, then find $\int_0^2 3f(x) - \frac{g(x)}{2} dx$.

An application of the definite integrals:

Theorem: If f is integrable and $f(x) \ge 0 \ \forall x \in [a, b]$, the area A of the region under the graph of f from a to b is

$$A = \int_{a}^{b} f(x) \ dx$$

Example: Sketch the region bounded by y=2x-1 and $x>0,\ y>0.$ Then, find the area.

Lecture	6

Day:

4.5 Properties of Definite Integrals

Mean Value Theorem for Definite Integrals:

Definition: Let f be continuous on [a,b], then the average value f_{av} of f on [a,b] is

$$f_{av} = \frac{1}{b-a} \int_{a}^{b} f(x) \ dx$$

Theorem: If f is continuous on [a,b], there is exists a number $z \in (a,b)$ such that

$$\int_{a}^{b} f(x) \ dx = (b - a)f(z)$$

•	•
H)X	ercise:

- (1) If $f(x) = \sqrt{x+2}$, then
- (i) Find the average value of f on [-2,0].
- (ii) Find a number z that satisfies the Mean value theorem.

•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••

• • • • • • • • • • • • • • • • • • • •	 •••••	 	
	 •••••	 	•••••

- (2) The number z that satisfies the conclusion of the Mean Value Theorem for $f(x) = x^2 + 1$ on [-2, 1] is:
- (a) $\frac{1}{\sqrt{2}}$
 - (b) 2

	 	 •	•••••
•••••	 •	 •	•••••

- (3) The number z that satisfies the conclusion of the Mean Value
- Theorem for f(x) = x on $[\alpha, \beta]$ is: (a) α (b) $\beta + 1$ (c) $\frac{\alpha + \beta}{2}$
 - (d) β

• • • • •	 • • • • •		 ••••		• • • • •	• • • •	• • • • •		• • • • •	• • • • •	• • • •	• • • • •	 	• • • • •	 • • • •	• • • •	 • • • •	• • •
	 • • • • •		 						• • • •	• • • • •	• • • •	• • • •	 	• • • •	 		 • • • •	• • •
• • • • •	 • • • • •	• • • • • •	 • • • • •	• • • • •	• • • • •	• • • •	• • • • •	• • • • •	• • • • •	• • • • •	• • • •	• • • • •	 • • • •	• • • • •	 • • • •	• • • •	 • • • •	• • •
	 • • • • •		 						• • • •	• • • • •	• • • •	• • • •	 	• • • •	 		 • • • •	• • •

- (4) The average value of $f(x)=\mid x-1\mid$ on [0,2] is equal to: (a) 0 (b) 1 (c) $\frac{1}{2}$ (d) 2

Date: / /

Day:

4.6 Fundamental Theorem of Calculus

(a) 1

Theorem: (Fundamental Theorem of Calculus) Suppose f is continuous on [a, b].

1 If $F(x) = \int_a^x f(t) dt$ for every $x \in [a, b]$, then F(x) is an anti-derivative of f on [a, b].

2 If F(x) is an anti-derivative of f on [a, b], then

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a)$$

Theorem: If g and h are differentiable and f is continuous, then

$$\frac{d}{dx} \int_{h(x)}^{g(x)} f(t) \ dt = f(g(x))g'(x) - f(h(x))h'(x)$$

Corollary: Let f be continuous on [a,b]. If $F(x) = \int_c^x f(t) \ dt$ where $c \in [a,b]$, then

$$F'(x) = \frac{d}{dx} \left[\int_{c}^{x} f(t) dt \right] = f(x)$$

Exercises:

(1) Find
$$\frac{d}{dx} \int_0^{x^2} \sqrt{t^4 + 1} \ dt$$

(2)	Fii	nd	$\frac{a}{dx}$	\int_{x}	si	n²	t dt	ţ,								
	• • • •	• • • • •	• • • •		· • • • •					 	 	 	 	 	• • • •	 	• • • • •

(3) If $\frac{d}{dx} \int_0^{x^2} f(\sqrt{t}) dt = x$ for x > 0, then f(x) is equal to

(c) $\frac{1}{r^2}$

(b) $\frac{1}{2x}$

(d) $\frac{1}{2}$

- (4) If $F(x) = \int_1^{2x} f'(t) dt$, then F'(x) is equal to
- (a) 2f(2x) f(1) (b) 2f(2x) (c) 2f'(2x) (d) f'(2x)

Day:

4.7 Numerical Integration

Until this stage of this course, we can not evaluate some integrals such as $\int \frac{1}{x} dx$ and $\int \sqrt{x^2 + 3} dx$. In this section, we are going to study two techniques of the numerical integration: Trapezoidal rule and Simpson's rule. These techniques are used to approximate definite integrals.

Trapezoidal Rule:

We use Trapezoidal rule to approximate definite integrals of form $\int_a^b f(x) dx$.

Method:

(1) We want to divide the interval [a,b] into sub-intervals, so find width of sub-intervals:

$$\Delta x = \frac{b-a}{n}$$

- (2) Find the partition $P = \{x_0, x_1, x_2, ..., x_n\}$ where $x_k = x_0 + k(\Delta x) = x_0 + k(\frac{b-a}{n})$.
- (3) Approximate the integral:

$$\int_{a}^{b} f(x) dx \approx \frac{(b-a)}{2n} \left[f(x_0) + 2f(x_1) + 2f(x_2) + 2f(x_3) + \dots + 2f(x_{n-1}) + f(x_n) \right]$$

Example 1: By using trapezoidal rule, approximate the integral $\int_1^2 \frac{1}{x} dx$ with n = 4.

Solution:

- (1) $\Delta x = \frac{b-a}{n} = \frac{2-1}{4} = \frac{1}{4}$.
- (2) Partition: $x_0 = 1$, $x_1 = 1 + \frac{1}{4} = 1\frac{1}{4}$, $x_2 = 1 + 2(\frac{1}{4}) = 1\frac{1}{2}$, $x_3 = 1 + 3(\frac{1}{4}) = 1\frac{3}{4}$ and $x_4 = 1 + 4(\frac{1}{4}) = 2$

The partition is $P = \{1, 1.25, 1.5, 1.75, 2\}.$

n	x_n	$f(x_n)$	m	$mf(x_n)$
0			1	
1			2	
2			2	
3			2	
4			1	
	$Sum = \sum_{k=1}^{2}$	$\lim_{x=1}^{n} mf(x_n)$		

$$\int_1^2 \frac{1}{x} dx \approx \frac{1}{8} \left[\right]$$

Error estimation:

Theorem: Suppose f is continuous on [a, b] and M is the maximum value for f'' on [a, b]. If E_T is the error in calculating $\int_a^b f(x) dx$ under trapezoidal rule, then

$$|E_T| < \frac{M(b-a)^3}{12n^2}$$

Example: Estimate the error in the previous example.

$$f(x) = \frac{1}{x} \Rightarrow f'(x) = \frac{-1}{x^2} \Rightarrow f''(x) = \frac{2}{x^3} \Rightarrow f'''(x) = \frac{-4}{x^4}$$

Since f''(x) is a decreasing function on the interval [1,2], then f''(x) is maximized at x = 1. This means M = f''(1)| = 2 and

$$|E_T| < \frac{2(2-1)^3}{(12)(4^2)} = \frac{2}{192} = \frac{1}{96}$$

Example 2: For the following integral $\int_0^2 \frac{1}{20} x^3 + 1 \ dx$

- (i) approximate the integral by using trapezoidal rule with n=4.
- (ii) estimate the error.

Solution:

- (i) Homework
- (ii) $f(x) = \frac{1}{20}x^2 + 1 \Rightarrow f^{'}(x) = \frac{3}{20}x^2 \Rightarrow f^{''}(x) = \frac{3}{10}x \Rightarrow f^{'''}(x) = \frac{3}{10}$. Since $f^{''}(x)$ is an increasing function on the interval [0,2], then $f^{''}(x)$ is maximized at x=2. This means $M=|f^{"}(2)|=\frac{(3)(2)}{10}=\frac{3}{5}$ and

$$|E_T| < \frac{\frac{3}{5}(2-0)^3}{(12)(4^2)} = \frac{3}{(30)(16)} = \frac{1}{160} = 0.0063$$

Date: / /

Day:

4.7 Numerical Integration

Simpson's Rule:

We can use Simpson's rule to approximate definite integrals of form $\int_a^b f(x) dx$.

Method:

- (1) We want to divide the interval [a, b] into sub-intervals, so find width of sub-intervals: $\Delta x = \frac{b-a}{n}$
- (2) Find the partition $P = \{x_0, x_1, x_2, ..., x_n\}$ where $x_k = x_0 + k(\Delta x) = x_0 + k\frac{(b-a)}{n}$.
- (3) Approximate the integral:

$$\int_a^b f(x) \ dx \approx \frac{(b-a)}{3n} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 2f(x_3) + \ldots + 4f(x_{n-1}) + f(x_n) \right]$$

Example: By using Simpson's rule, approximate the integral $\int_1^3 \frac{1}{x+1} dx$ with n=4.

Solution:

(1)
$$\Delta x = \frac{b-a}{n} = \frac{3-1}{4} = \frac{2}{4} = \frac{1}{2}$$
.

(2) Partition: $x_0 = 1$,

$$x_1 = 1 + \frac{1}{2} = 1\frac{1}{2}$$

$$x_2 = 1 + \tilde{2}(\frac{1}{2}) = 2$$

$$x_1 = 1 + \frac{1}{2} = 1\frac{1}{2},$$

 $x_2 = 1 + 2(\frac{1}{2}) = 2,$
 $x_3 = 1 + 3(\frac{1}{2}) = 2\frac{1}{2}$ and
 $x_4 = 1 + 4(\frac{1}{2}) = 3$

$$x_4 = 1 + 4(\frac{1}{2}) = 3$$

The partition is $P = \{1, 1.5, 2, 2.5, 3\}.$

n	x_n	$f(x_n)$	m	$mf(x_n)$
0			1	
1			4	
2			2	
3			4	
4			1	
	$Sum = \sum_{k=1}^{4}$	$\lim_{x=1} mf(x_n)$		

$$\int_1^3 \frac{1}{x+1} \ dx \approx \frac{1}{6} \left[$$

Error estimation:

Theorem: Suppose $f^{(4)}$ is continuous on [a, b] and M is the maximum value for $f^{(4)}$ on [a,b]. If E_s is the error in calculating $\int_a^b f(x) dx$ under Simpson's rule, then

$$|E_s| < \frac{M(b-a)^5}{180n^4}$$

Example: Estimate the error in the previous example.

$$f(x) = \frac{1}{x+1} \Rightarrow f'(x) = \frac{-1}{(x+1)^2} \Rightarrow f''(x) = \frac{2}{(x+1)^3} \Rightarrow f'''(x) = \frac{-6}{(x+1)^4}$$
$$\Rightarrow f^{(4)}(x) = \frac{24}{(x+1)^5} \Rightarrow f^{(5)}(x) = \frac{-120}{(x+1)^6} .$$

Since $f^{(5)}(x)$ is a decreasing function on the interval [1, 3], then $f^{(4)}(x)$ is maximized at x=1. This means $M=|f^{(4)}(1)|=0.75$ and

$$|E_s| < \frac{(0.75)(3-1)^3}{(180)(4^4)} = 0.00013$$

Exercise 1: By using trapezoidal rule, approximate the following integrals and then estimate the error

- (1) $\int_0^{\pi} \sin x \, dx$ with n=4.
- (2) $\int_{-2}^{3} e^{-x} dx$ with n = 4.
- (3) $\int_{1}^{3} \frac{1}{x^{2}} dx$ with n = 4.

Exercise 2: By using Simpson's rule, approximate the following integrals and then estimate the error

- (1) $\int_0^4 \sqrt{1+x^3} \ dx$ with n=4.
- (2) $\int_0^1 \frac{4}{1+x^2} dx$ with n=4.
- (3) $\int_0^{\frac{\pi}{2}} \cos x \, dx$ with n = 4.

Lecture | 8 |

Date: / /

Day:

6.2 Natural Logarithm Function

We have seen that $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ where $n \neq -1$. This formula can not be used when n = -1 where then the denominator becomes zero. This means we do not know the value of the integral $\int \frac{1}{x} dx$. Alternatively, we are looking for a function F(x) such that $F^{'}(x) = \frac{1}{x}$.

Definition: The natural logarithm function is defined as follows: $ln:(0,\infty)\to\mathbb{R},\ ln(x)=\int_1^x\frac{1}{t}\ dt$

Note that the function $f(t) = \frac{1}{t}$ is continuous on any interval that does not contain 0.

Remark:

1) Domain of the function ln(x) is $(0, +\infty)$.

- 2) Range of the function ln(x) is \mathbb{R} .
- 3) Values of ln(x):
- (i) ln(x) > 0 if x > 1
- (ii) ln(x) = 0 if x = 1
- (iii) ln(x) < 0 if 0 < x < 1
- (iv) $\ln(e) = 1$ where $e \approx 2.718$
- (4) The function ln(x) is differentiable and continuous on the domain $(0,\infty)$. Also,

$$\frac{d}{dx}(\ln(x)) = \frac{d}{dx} \int_{1}^{x} \frac{1}{t} dt = \frac{1}{x}$$

- (5) ln(x) is increasing function and it is concave on the domain $(0, \infty)$.
- (6) $\lim_{x\to 0^+} \ln(x) = -\infty$ and $\lim_{x\to\infty} \ln(x) = +\infty$.

Theorem: For every a, b > 0 and $n \in \mathbb{Q}^{a}$, then

- $(1) \ln(ab) = \ln(a) + \ln(b)$
- $(2) \ln(\frac{a}{b}) = \ln(a) \ln(b)$
- $(3) \ln(a^n) = n \ln(a)$

Theorem: If u = g(x) is differentiable and $u \neq 0$ for every x in an interval I, then

$$\frac{d}{dx}\ln(|u|) = \frac{1}{u}\frac{du}{dx}$$
, for every $x \in I$.

Exercise 1: Find f'(x)

$(1) f(x) = \ln(x^2 + 4)$	$(2) f(x) = cos(\ln(x^3))$

- (3) If $f(x) = \ln(\ln(x))$, then f'(e) is
- (c) $\frac{1}{a}$ (d) $-\frac{1}{a}$

Exercise 2: If $y = \ln($	$\sqrt{\frac{x^2-1}{x^2+1}}$, find y'

Exercise 3: If $y = (1 + x^2)^{\sin x}$, find y'

 $^{^{}a}Q$ is a set of rational numbers.

Date: / /

Day:

6.3 Natural Exponential Function

The natural exponential function (exp or e) is the inverse function of the natural logarithm function. Therefore,

$$exp: \mathbb{R} \to (0, \infty)$$

Theorem: For any $x \in \mathbb{R}$, there exists $y \in \mathbb{R}^+$ such that

$$x = \ln(y) \Leftrightarrow y = exp(x)$$

Remark:

- 1) From the above discussion, the domain of exp is \mathbb{R} and the range is $(0, +\infty)$.
- 2) $\lim_{x\to+\infty} exp(x) = \infty$ and $\lim_{x\to-\infty} exp(x) = 0$
- 3) $\ln(e^x) = x \ln(e) = x(1) = x$ for $x \in \mathbb{R}$.
- 4) $e^{\ln(x)} = x$ for $x \in \mathbb{R}^+$.

Theorem: For every a, b > 0 and $n \in \mathbb{Q}^{a}$, then

- $(1) e^a e^b = e^{a+b}$
- $(2) \frac{e^a}{e^b} = e^{a-b}$
- $(3) (e^a)^b = e^{ab}$

Theorem: If u = f(x) is differentiable, then

$$\frac{d}{dx}(e^u) = e^u \frac{du}{dx}$$

Exercise 1: Find value of x:

 $(1) \ln(x) = 2$

 $(2) \ln(\ln(x)) = 0$

Exercise 2: Find f'

(1) $f(x) = e^{3\cos x - 4x^2}$

(2) $f(x) = \sin(e^{x^2})$

Exercise 3: If $y = x^{e^x}$, find y'.

 $^{^{}a}Q$ is a set of rational numbers.

Lecture	9

Day:

6.4 Integration Using Natural Logarithm and Exponential Functions

$$\frac{d}{dx}\ln(x) = \frac{1}{x} \Rightarrow \int \frac{1}{x} dx = \ln|x| + c$$

and

$$\frac{d}{dx}\ln(u) = \frac{1}{u}\frac{du}{dx} \Rightarrow \int \frac{1}{u}u' dx = \ln|u| + c$$

Also,

$$\frac{d}{dx}e^x = e^x \Rightarrow \int e^x dx = e^x + c$$

and

$$\frac{d}{dx}e^{u}=e^{u}$$
 $\frac{du}{dx}\Rightarrow\int e^{u}$ $u^{'}$ $dx=e^{u}+c$

 ${\bf Exercise:}\,$ Evaluate the following integrals:

$$(1) \int \frac{2}{2x+7} \ dx$$

(2)	ſ	$\frac{x^2+1}{x^3+2x+1}$	dx
(-)	J	$x^3 + 3x + 1$	au

(3)
$$\int \frac{\sin x - \cos x}{\sin x + \cos x} dx$$

$$(4) \int x e^{-x^2} dx$$

•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••		• • • • • • • • • • • • • • • • • • • •	

$$(5) \int \frac{e^x + e^{-x}}{e^x - e^{-x}} dx$$

•••••	••••••		• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	

(6)
$$\int_0^{\ln(5)} e^x (3 - 4e^x) dx$$

•••••	
 	 •••••

$$(7) \int \frac{1}{\sqrt{x}e^{\sqrt{x}}} dx$$

(1) General Exponential Function

In the previous lecture, we defined the natural exponential function (e^x) . In this lecture, we generalize that function for any base other than e.

Definition: For any $x \in \mathbb{R}$, $a^x = e^{x \ln(a)}$.

The definition is derived from the natural logarithm function. We know from the properties that

$$\ln(a^x) = x \ln(a)$$

By taking the exp for both sides,

$$e^{\ln(a^x)} = e^{x \ln(a)} \Rightarrow a^x = e^{x \ln(a)}$$

The function $f(x) = a^x$ is an exponential function with base a where x is called exponent.

Remark:

- 1) The domain of $f(x) = a^x$ is \mathbb{R} the range is $(0, +\infty)$.
- 2) For values of the base a, we have,
- (i) If a > 1, $\ln(a) > 0$, then $x \ln(a)$ increases as x increases. Hence, $f(x) = a^x$ is increasing function.
- (ii) If 0 < a < 1, $\ln(a) < 0$, then $x \ln(a)$ decreases as x increases. Hence, $f(x) = a^x$ is decreasing function.
- (iii) If a = 1, $\ln(a) = 0$, then f(x) = 1 (constant function).

3) The function $f(x) = \frac{1}{a^x}$ can be written as $f(x) = a^{-x}$.

Theorem: For every a, b > 0 and $x, y \in \mathbb{R}$, then

 $(1) a^x b^y = a^{x+y}$

(2) $\frac{a^x}{a^y} = a^{x-y}$

Differentiation and Integration of $f(x) = a^x$:

(1) If u = f(x) is differentiable, then

$$\frac{d}{dx}(a^x) = a^x \ln(a)$$

$$\frac{d}{dx}(a^u) = a^u \ln(a) \ u'$$

(2) Integration of the general exponential function:

$$\int a^x \ dx = \frac{1}{\ln(a)} \ a^x + c$$

$$\int a^u u' \ dx = \frac{1}{\ln(a)} \ a^u + c$$

Exercise 1: Find f'(x)

 $(1) f(x) = 2^{\sqrt{x}\sin x}$

(2) $f(x) = \cos(3x^2)$

Lecture 10	Date: / /	Day:	6.5 General Exponential and Logarithmic Functions
Remember:			$(3) \int \frac{3^{\sqrt{x}}}{\sqrt{x}} dx$
If $u = f(x)$ is diffe	erentiable, then		
$\frac{d}{d}$	$\frac{d}{dx}(a^x) = a^x \ln(a) \Rightarrow \int a^x da$	$dx = \frac{1}{\ln(a)} \ a^x + c$	
$\frac{d}{dx}$	$(a^{u}) = a^{u} \ln(a) u' \Rightarrow \int a^{u} u$	$\int dx = \frac{1}{\ln(a)} a^u + c$	
	$x) = 4^{x \tan(x)}, \text{ find } f'$		(4) $\int_0^1 4^x dx$
			·
	(0)		·
Exercise 2: If $y =$	$=(x^2+1)^x$, find y' .		
			$(5) \int \frac{2^x}{2^x + 1} \ dx$
	uate the following integrals:		
$(1) \int 5^{3x} dx$			
			·
			(6) $\int 3^x (3 + \sin 3^x) dx$
			·
$(2) \int_0^2 x 3^{-x^2} \ dx$			
			·
•••••			

Day:

6.5 General Exponential and Logarithmic Functions

(2) General logarithmic Function

The inverse function of $y = a^x$ is the general logarithm function $x = \log_a y$. Since $a^x : \mathbb{R} \to (0, \infty)$, then

$$\log_a:(0,\infty)\to\mathbb{R}$$

$$y = a^x \Leftrightarrow x = \log_a y$$

The function \log_a is called the logarithm function with the base a.

Remarks:

- 1) The natural logarithm function $\ln = \log_e$.
- 2) Usually, the logarithm function $\log_{10} = \log$.
- 3) $\log_a x = \frac{\ln x}{\ln a} \Rightarrow \log_a a = 1$.

Let $y = \log_a x \Rightarrow x = a^y \Rightarrow \ln x = \ln a^y \Rightarrow \ln x = y \ln a \Rightarrow y = \frac{\ln x}{\ln a}$.

4) The graph of $\log_a x$ depends on $\ln a$ meaning that if a > 1 or 0 < a < 1.

Theorem: For every $x, y \in \mathbb{R}^+$ and for every $n \in \mathbb{R}$,

- $(1) \log_a(xy) = \log_a(x) + \log_a(y)$
- $(2) \log_a(\frac{x}{y}) = \log_a(x) \log_a(y)$
- (3) $\log_a(x^n) = n \log_a(x)$

Exercise 1: If $\log_2(\frac{x}{x-1}) = 1$, then x is equal to:

- (b) 2
- (c) $\frac{1}{2}$
- (d) -1

Differentiation and integration of the general logarithmic function: Let u = f(x) be differentiable, then

$$\frac{d}{dx}log_a x = \frac{1}{\ln a} \frac{1}{x} \Rightarrow \int \frac{1}{x \ln a} = \log_a x + c$$

$$\frac{d}{dx}log_{a}u = \frac{1}{\ln a} \frac{1}{u} u' \Rightarrow \int \frac{u'}{u \ln a} = \log_{a} u + c$$

Exercise 1: Find y'

1) $y = \log_7 \sqrt{x^2 + y^2}$	$\sin^2 x$	

$2) y = \log(\ln x)$	

Exercise 2: Evaluate the following integrals

1) $\int \frac{1}{x \log x} dx$

2) $\int_3^9 \frac{\log_3(x^2)}{x} dx$

Date: / /

Day:

6.7 Inverse Trigonometric Functions

In this lecture, we are going to define the inverse trigonometric functions.

 $(1) \sin^{-1}$:

$$x = \sin y \Leftrightarrow y = \sin^{-1} x$$

 $-1 \le x \le 1 \text{ and } -\frac{\pi}{2} \le y \le \frac{\pi}{2}$

2) \cos^{-1} :

$$x = \cos y \Leftrightarrow y = \cos^{-1} x$$

 $-1 \le x \le 1 \text{ and } 0 \le y \le \pi$

3) \tan^{-1} :

$$x = \tan y \Leftrightarrow y = \tan^{-1} x$$

 $x \in \mathbb{R} \text{ and } -\frac{\pi}{2} < y < \frac{\pi}{2}$

4) \sec^{-1} :

$$x = \sec y \Leftrightarrow y = \sec^{-1} x$$

 $x \le -1 \text{ or } x \ge 1 \text{ and}$

$$x \le -1$$
 or $x \ge 1$ and $0 \le y < \frac{\pi}{2}$ or $\pi \le y < \frac{3\pi}{2}$

Differentiation of inverse trigonometric functions:

Let u = f(x) be differentiable, then

y	$y^{'}$	y	$\int y \ dx$
$\sin^{-1} u$	$\frac{1}{\sqrt{1-u^2}}u'$	$\int \frac{1}{\sqrt{1-x^2}} \ dx$	$\sin^{-1}(x) + c$
$\cos^{-1} u$	$\frac{-1}{\sqrt{1-u^2}}u'$	$\int \frac{-1}{\sqrt{1-x^2}} \ dx$	$\cos^{-1}(x) + c$
$\tan^{-1} u$	$\frac{1}{1+u^2}u'$	$\int \frac{1}{1+x^2} \ dx$	$ \tan^{-1}(x) + c $
$\sec^{-1} u$	$\frac{1}{u\sqrt{u^2-1}}u'$	$\int \frac{1}{x\sqrt{x^2-1}} \ dx$	$\sec^{-1}(x) + c$

Exercise 1: Choose the correct answer:

1) The derivative of $\sec^{-1}(e^x)$ is equal to

(a)	1
(a)	$e^x \sqrt{e^x - 1}$

(b)
$$\frac{1}{\sqrt{e^x - 1}}$$

(c)
$$\frac{1}{\sqrt{e^{2x}}}$$

(b)
$$\frac{1}{\sqrt{e^x-1}}$$
 (c) $\frac{1}{\sqrt{e^{2x}-1}}$ (d) $\frac{1}{\sqrt{e^{2x}+1}}$

•••••	 	

2) The value of the integral $\int \frac{\sin x}{\sqrt{4-\cos^2 x}} dx$ is equal to

(a)
$$\sin^{-1}(\cos x) + \epsilon$$

(b)
$$\cos^{-1}(\frac{\cos x}{2}) + c$$

(a)
$$\sin^{-1}(\cos x) + c$$
 (b) $\cos^{-1}(\frac{\cos x}{2}) + c$ (c) $-\cos^{-1}(\frac{\cos x}{2}) + c$ (d) $\sin^{-1}(\frac{\sin x}{2}) + c$

(d)
$$\sin^{-1}\left(\frac{\sin x}{2}\right) + c$$

.....

.....

.....

.....

.....

.....

Day:

6.8 Hyperbolic and Inverse Hyperbolic Functions

In this section, we study hyperbolic functions that depend on functions e^x and e^{-x} .

(1) Hyperbolic Functions:

Hyperbolic Sine:

$$\sinh x = \frac{e^x - e^{-x}}{2}, \forall x \in \mathbb{R}$$

Hyperbolic Cosine:

$$\cosh x = \frac{e^x + e^{-x}}{2}, \forall x \in \mathbb{R}$$

Hyperbolic Tangent:

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \forall x \in \mathbb{R}$$

Hyperbolic Cotangent:

$$\coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}, \forall x \neq 0$$

Hyperbolic Secant:

$$\operatorname{sec} hx = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}, \forall x \in \mathbb{R}$$

Hyperbolic Cosecant:

$$\csc hx = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}, \forall x \neq 0$$

Remarks:

- 1) For $x \in \mathbb{R}$, $\cosh^2 x \sinh^2 x = 1$
- $2) 1 \tanh^2 x = \sec h^2 x$
- $3) \coth^2 x 1 = \csc h^2 x$

Differentiation Hyperbolic Functions:

y	$y^{'}$	y	$y^{'}$
$\sinh u$	$\cosh u \ u^{'}$	$\coth u$	$-\csc h^2 u \ u'$
$\cosh u$	$\sinh u u'$	$\sec hu$	$-\sec hu \tanh u u'$
$\tanh u$	$\sec h^2 u \ u'$	$\csc hu$	$-\operatorname{csc} hu\operatorname{coth} uu'$

Exercise 1: Choose the correct answer:

- 1) The derivative of the function $f(x) = \tan^{-1}(\sinh x)$ is equal to
- (a) $\sec hx$ (b) $\csc hx$
- (c) $\tanh x$

- 2) The value of the integral $\int_{-1}^{1} \sinh(x)$ is equal to

- (c) $2e^{-1}$ (d) $\frac{1}{2}e$

Exercise 2: If $f(x) = \cosh(\sqrt{4x^2 + 3})$ find f'(x)

.....

Lecture	19	

Day:

6.8 Hyperbolic and Inverse Hyperbolic Functions

(2) Inverse Hyperbolic Functions:

1)

$$sinh^{-1}: \mathbb{R} \to \mathbb{R}$$

$$\sinh y = x \Leftrightarrow y = \sinh^{-1} x$$

2)

$$\cosh^{-1}: [1, \infty) \to [0, \infty)$$

$$\cosh y = x \Leftrightarrow y = \cosh^{-1} x$$

3)

$$\tanh^{-1}:(-1,1)\to\mathbb{R}$$

$$\tanh y = x \Leftrightarrow y = \tanh^{-1} x$$

4)

$$\sec h^{-1}:(0,1]\to [0,\infty)$$

$$\sec hy = x \Leftrightarrow y = \sec h^{-1}x$$

Differentiation of Inverse Hyperbolic Functions :

y	$y^{'}$	y	$y^{'}$
$\sinh^{-1} u$	$\frac{1}{\sqrt{u^2+1}}u'$	$\tanh^{-1} u$	$\frac{1}{1-u^2}u', u < 1$
$\cosh^{-1} u$	$\frac{1}{\sqrt{u^2-1}}u', u>1$	$\sec h^{-1}u$	$\frac{-1}{u\sqrt{1-u^2}}u', \ 0 < u < 1$

Exercise 3: Evaluate the following integrals

$$1) \int \frac{1}{x\sqrt{1-x^4}} \ dx$$

	•••••	
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 •••••

2)	ſ	1	dx
4)	J	$\sqrt{25x^2-9}$	u_{J}

$$3) \int \frac{1}{\sqrt{1 - e^{2x}}} \ dx$$

																					• • • • •	
																					• • • •	
																					• • • • •	
	•••	• • • •	•••	 • • • •	••••	• • • •	• • • •	 	• • • •	• • • •	• • • •	 • • • •	• • • •	• • • •	• • • •	 • • • •	• • • •	• • • •	••••	• • • •	••••	 ••••

$$4) \int \frac{x+1}{x\sqrt{25-x^2}} \ dx$$

Date: / /

Day:

6.9 Indeterminate Forms & L'Hopital Rule

Exercise 1: Find the following limits

- 1) $\lim_{x\to 5} x 5$
- 2) $\lim_{x\to 5} \frac{x^2-25}{x-5}$
- 3) $\lim_{x\to 5} \frac{x-5}{x^2-25}$
- 4) $\lim_{x\to 5} \frac{\sqrt{x-1}-2}{x^2-25}$
- 5) $\lim_{x\to 0} \frac{\sin x}{x}$

Indeterminate Forms:

Form	Indeterminate Forms
Quotient	$\frac{0}{0}$ and $\frac{\infty}{\infty}$
Product	$0.\infty \text{ and } 0.(-\infty)$
Sum & Difference	$(-\infty) + \infty$ and $\infty - \infty$
Exponential	$0^0, 1^\infty, 1^{-\infty} \text{ and } \infty^0$

L'Hopital Rule:

Suppose f(x) and g(x) are differentiable on an interval I and $c \in I$ where f and g may not be differentiable at c. If $\frac{f(x)}{g(x)}$ has the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, if $\lim_{x\to c} \frac{f'(x)}{g'(x)}$ exists or equals to ∞ or $-\infty$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Exercise: Find the following limits:

1) $\lim_{x\to 5} \frac{\sqrt{x-1}-2}{x^2-25}$	
•••••	

$2) \lim_{x\to 0} \frac{\sin x}{x}$
3) $\lim_{x\to 0} \frac{\cos x + 3x - 1}{4x}$
5) $\lim_{x\to\infty} \frac{\ln x}{\sqrt{x}}$
6) $\lim_{x\to 0} \frac{e^{ax}}{x^k}$

M-106	Calculus	Integration	
M-100	Calculus	megranon	

\mathbf{D}	0000
P	age:

Lecture [13]	Date: / /	Day: 	6.9 Indeterminate Forms & L'Hopital Rule
7) $\lim_{x\to 0^+} x^2 \ln x$			10) $\lim_{x\to 0} \frac{x-tan^{-1}x}{x\sin x}$
$8) \lim_{x \to \frac{\pi}{4}} (1 - \tan x)$	$(x)\sec(2x)$		11) $\lim_{x\to 0} (1+\frac{1}{x})^x$
9) $\lim_{x\to 1} \left(\frac{1}{x-1} - \frac{1}{\ln x}\right)$	$\left(\frac{1}{x}\right)$		
			12) $\lim_{x\to\infty} (1+\frac{1}{x})^{5x}$

Page: $\boxed{1}$

Lecture 14

Date: / /

Day:

7.1 Integration by Parts

Theorem: Let u = f(x) and v = g(x). If f' and g' are continuous, then

$$\int u \ dv = uv - \int v \ du$$

Explanation:

We know that

$$\frac{d}{dx}(f(x)g(x)) = f(x)g'(x) + f'(x)g(x)$$

This implies

$$f(x)g'(x) = \frac{d}{dx}(f(x)g(x)) - f'(x)g(x)$$

By integrating both sides

$$\int f(x)g'(x) dx = \int \frac{d}{dx} (f(x)g(x)) dx - \int f'(x)g(x) dx$$
$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$

Since du = f'(x)dx and dv = g'(x)dx, then

$$\int u \ dv = uv - \int v \ du$$

Question: Why do we use the integration by parts?

We use this technique to simplify the original integral by dividing the integrand into two parts u and dv.

Example: Evaluate the following integrals $\int x \cos x \ dx$.

Solution:

Let $I = \int x \cos x \, dx$ and $u = x \Rightarrow du = dx$ $dv = \cos x \Rightarrow v = \sin x$

 $I = x \sin x - \int \sin x \, dx$

$$\Rightarrow I = x \sin x + \cos x .$$

 ${\bf Exercise:}$ Evaluate the following integrals

L) J	$x \sec^2$	x	dx

• • • • • • • • • • • • • • • • • • • •	 	• • • • • • • • • • • • • • • • • • • •	
•••••	 •		

		 •••••	 •••••	 		•••••	 	 	
	• • • • • •	 • • • • • •	 	 	• • • • • • • •	• • • • • •	 • • • • • • • • •	 • • • • • • • •	
		 	 	 		• • • • • • •	 	 	

2) $\int e^x \sin x \, dx$

				•••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••

	 •••••	 	 		 	
	 	 	 	• • • • • • • • • • • • • • • • • • • •	 	

 	• • • • • • • • • • • • • • • • • • • •	

VI-106	Calculus	Integration
VI-IUU	Carcurus	minegranom

Page:	

Lecture 14	Date: / /	Day:	7.1 Integration by Parts
====================================			$5) \int xe^x dx$
$4) \int \tan^{-1} x \ dx$			$6) \int x^3 \sqrt{1+x^2} \ dx$

M-106 Calculus Integration

CHAPTER: 7

Page: 1

Lecture 15

Date: / /

Day:

7.2 Trigonometric Integrals

In this section, we evaluate integrals of forms:

- 1) $\int \sin^n x \cos^m x \, dx$
- 2) $\int \tan^n x \sec^m x \, dx$
- 3) $\int \sin nx \sin mx \, dx$, $\int \cos nx \cos mx \, dx$, $\int \sin nx \cos mx \, dx$

Before we start considering the previous forms, we present some important formulas that are used in this section.

$\cos^2 x + \sin^2 x = 1$	$1 + \tan^2 x = \sec^2 x$
$\cot^2 x + 1 = \csc^2 x$	$2\cos^2 x - 1 = \cos 2x$
$\sin^2 x = \frac{1 - \cos 2x}{2}$	$\cos^2 x - \sin^2 x = \cos 2x$
$\cos^2 x = \frac{1 + \cos 2x}{2}$	$1 - 2\sin^2 x = \cos 2x$
$\sin mx \cos nx = \frac{1}{2} \left[\sin(r) \right]$	$(n-n)x + \sin(m+n)x$
$\sin mx \sin nx = \frac{1}{2} \left[\cos(nx) \right]$	$(n-n)x - \cos(m+n)x$
$\cos mx \cos nx = \frac{1}{2} \left[\cos(r^2 + r^2) \right]$	$(n-n)x + \cos((m+n)x)$

Form 1

$$\int \sin^n x \, \cos^m x \, dx$$

Method:

(1) If n is odd, we write $\sin^n x \cos^m x = \sin^{n-1} x \cos^m x \sin x$.

Then, we use $\cos^2 x + \sin^2 x = 1$ and the substitution $u = \cos x$.

(2) If m is odd, we write $\sin^n x \cos^m x = \sin^n x \cos^{m-1} x \cos x$.

Then, we use $\cos^2 x + \sin^2 x = 1$ and the substitution $u = \sin x$.

③ If n and m are even, we use the formula $\sin^2 x = \frac{1-\cos 2x}{2}$ and $\cos^2 x = \frac{1+\cos 2x}{2}$.

Exercise: Evaluate the following integrals

(1) $\int \sin^3 x \ dx$

Since n=3 is odd, we use the substitution method. Write

$$\sin^3 x = \sin^2 x \, \sin x$$

$$\sin^3 x = (1 - \cos^2 x) \sin x$$

Let $u = \cos x \Rightarrow du = -\sin x$. By substituting, the integral becomes

$$-\int (1-u^2) \ du = -(u - \frac{u^3}{3}) + c$$

but $u = \cos x$, this implies

$$\int \sin^3 x \ dx = -\cos x + \frac{\cos^3 x}{3} + c$$

(2) $\int \sin^4 x \ dx$

••••	• • • • •	• • • •	• • • •	• • • •	• • • •	•••	• • • •	• • • •	• • • •	•••	• • • •	• • • •	• • •	• • •	• • • •	• • • •	•••	• • • •	• • •	• • •	• • • •	•••	• • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • • •
••••		• • • •		• • • •		• • •	• • • •	• • • •		• • •	• • • •		•••	•••	• • •		• • •			• • •			•••	• • • •		• • •	• • • •		
		••••	••••	• • • •	• • • •	•••	• • • •	• • • •	• • • •	•••	• • • •		• • •	• • •	• • • •	• • • •	•••	• • • •	• • •	•••	• • • •	•••	•••	• • • •	• • • •	• • • •	• • • •	• • • •	• • • • •
••••	• • • • •	••••	••••	• • • •	• • • •	• • •	••••	• • • •	• • • •	• • •	• • • •		•••	•••	• • •	• • • •	• • •	• • • •	•••	•••	• • • •	•••	•••	• • • •	• • • •	• • •	• • • •	• • • •	• • • •
••••		• • • •	••••	• • • •	• • • •	• • •	• • • •	• • • •		• • •	• • • •		• • •	•••	• • • •	• • • •	• • •	• • • •	• • •	• • •	• • • •	•••	•••	• • • •		• • • •	• • • •	• • • •	
••••		• • • •	••••	• • • •	• • • •	• • •	• • • •	• • • •		• • •	• • • •		• • •	•••	• • • •	• • • •	•••	• • • •	• • •	• • •	• • • •	•••	•••	• • • •		• • • •	• • • •	• • • •	
••••																													
••••	• • • • •	• • • •	• • • •	• • • •		• • •	• • • •	• • • •		• • •	• • • •		• • •	• • •	• • • •	• • • •	• • •		•••	•••	• • • •	• • •	•••	• • • •		• • •	• • • •		• • • •
••••																													
••••																													
••••																													
•••••	• • • • •	••••	••••	• • • •	• • • •	•••	••••	• • • •	• • • •	•••	• • • •	• • • •	•••	•••	• • •	• • • •	•••	• • • •	• • •	•••	• • • •	•••	•••	• • • •	• • • •	•••	• • • •	• • • •	• • • • •
•••••																													
•••••																													
•••••																													
•••••																													
•••••																													
• • • • • •	• • • • •	••••	• • • •	• • • •	• • • •	•••	• • • •	• • • •	• • • •	•••	• • • •	• • • •	•••	•••	• • •	• • • •	•••	• • • •	•••	•••	• • • •	•••	•••	•••	• • • •	•••	• • • •	• • • •	••••

M-106 Calculus Integration	M-106	Calculus	Integration
----------------------------	-------	----------	-------------

Page:	Γ
I ago.	1

Lecture 15	Date: / /	Day:	7.2 Trigonometric Integrals	
====================================			$(5) \int_0^{\frac{\pi}{2}} \sin^3 x \cos^3 x dx$	
				••••
				••••
				••••
				••••
$(4) \int \sin^2 x \cos^4 x dx$	dx		(6) $\int \cos^5 x \ dx$	
				••••
				••••
				••••
•••••				••••
•••••				• • • •
•••••	•••••			••••
•••••				••••
•••••				••••
•••••				• • • •
				• • • •
				••••
•••••	•••••			• • • •

Date: / /

Day:

7.2 Trigonometric Integrals

Remember:

$\cos^2 x + \sin^2 x = 1$	$1 + \tan^2 x = \sec^2 x$
$\cot^2 x + 1 = \csc^2 x$	$2\cos^2 x - 1 = \cos 2x$
$\sin^2 x = \frac{1 - \cos 2x}{2}$	$\cos^2 x - \sin^2 x = \cos 2x$
$\cos^2 x = \frac{1 + \cos 2x}{2}$	$1 - 2\sin^2 x = \cos 2x$

Remark:

- (1) $\int \tan x \ dx = \int \frac{\sin x}{\cos x} \ dx = -\ln|\cos x| + c.$
- (2) $\int \cot x \ dx = \int \frac{\cos x}{\sin x} \ dx = \ln|\sin x| + c.$
- (3) $\int \sec x \ dx = \int \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x} \ dx = \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} = \ln|\sec x + \tan x| + c.$

Form $\boxed{2}$

$$\int \tan^n x \sec^m x \, dx$$

Method:

- ① If n = 0 and
- (i) m is odd, then write $\sec^m x = \sec^{m-2} x \sec^2 x$. Use the integration by parts and let $u = \sec^{m-2} x$ and $dv = \sec^2 x$.
- (ii) m is even, then write $\sec^m x = \sec^{m-2} x \sec^2 x \, dx$ and use $\sec^2 x = 1 + \tan^2 x$ with the substitution $u = \tan x$.
- ② If m = 0, write $\tan^n x = \tan^{n-2} x \tan^2 x$ and use $\tan^2 x = \sec^2 x 1$ with the substitution $u = \tan x$.
- ③ If n is even and m is odd, use $\tan^2 x = \sec^2 x 1$ to change the integral to becomes $\int \sec^r x \, dx$, then use ①.
- 4 n is odd and m is even OR if n and m are even, then write $\tan^n x = \sec^m x = \tan^n x \sec^{m-2} x \sec^2 x \ dx$ and use $\sec^2 x = 1 + \tan^2 x$ with the substitution $u = \tan x$.

${\bf Exercise:}$ Evaluate the following integrals

$(1) \int \tan^3 x \ dx$
$(2) \int \tan^4 x \ dx$

(3) $\int \sec^4 x \ dx$		

() 3		
	 	• • • • • • • • • • • • • • • • • • • •

Page:	2
_	$\overline{}$

Lecture 16	Date: / /	Day:	7.2 Trigonometric Integrals	
====================================			(6) $\int \tan^5 x \sec^6 x dx$	
•••••				• • • • •
•••••				• • • • •
•••••				• • • • •
•••••				• • • • •
•••••				• • • • •
•••••				• • • • •
•••••				• • • • •
•••••				
•••••				
•••••				• • • • •
•••••				• • • • •
				• • • • •
				• • • • •
				• • • • •
				• • • • •
				• • • • •
$(5) \int \tan^2 x \sec^4 x$	dx		$(7) \int \tan^2 x \sec^3 x \ dx$	
				• • • • •
				• • • • •
				• • • • •
				• • • • •

M_106	Calculus	Integration
M1-100	Carculus	integration

Page	1
Page:	I

Lecture 17	Date: / /	Day:	7.2 Trigonometric Integrals
Remember:			$(3) \int \sin 5x \cos 3x dx$
	$\sin mx \cos nx = \frac{1}{2} \left[\sin(m-n)x \right]$ $\sin mx \sin nx = \frac{1}{2} \left[\cos(m-n)x \right]$ $\cos mx \cos nx = \frac{1}{2} \left[\cos(m-n)x \right]$	$-\cos(m+n)x$	
Exercise: Ev	aluate the following integrals		
$(1) \int \sin 5x \sin x$	n 3x dx		
			$(4) \int_0^{\frac{\pi}{2}} \sin 3x \cos 2x \ dx$
$(2) \int \cos 3x \ \cos$	$\cos 2x dx$		

Date: / /

Day:

7.3 Trigonometric Substitution

(3) $\int \frac{\sqrt{x^2-25}}{x^4}$

We are going to study integrals contains of $\sqrt{a^2-x^2}$, $\sqrt{a^2+x^2}$ and $\sqrt{x^2-a^2}$.

 $\boxed{1} \sqrt{a^2 - x^2} = a\cos\theta \text{ if } x = a\sin\theta.$

If
$$x = a \sin \theta$$
, then $\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2 \theta} = \sqrt{a^2 (1 - \sin^2 \theta)} = \sqrt{a^2 \cos^2 \theta} = a \cos \theta$

$$\boxed{2}\sqrt{a^2+x^2}=a\sec\theta \text{ if } x=a\tan\theta.$$

If $x = a \tan \theta$, then $\sqrt{a^2 + x^2} = \sqrt{a^2 + a^2 \tan^2 \theta} = \sqrt{a^2 (1 + \tan^2 \theta)} =$ $\sqrt{a^2 \sec^2 \theta} = a \sec \theta.$

$$\boxed{3} \sqrt{x^2 - a^2} = a \tan \theta \text{ if } x = a \sec \theta.$$

If $x = a \sec \theta$, then $\sqrt{x^2 - a^2} = \sqrt{a^2 \sec^2 \theta - a^2} = \sqrt{a^2 (\sec^2 \theta - 1)} =$ $\sqrt{a^2 \tan^2 \theta} = a \tan \theta$.

Exercise:	Evaluate	the	following	integrals
-----------	----------	-----	-----------	-----------

(.	1) J	x	√	4 -	— a	C- (dx													
								 	 	 	•••	 	 	 	•••	 	 	· • • •	 	
	• • • • • •																			
	· · · · · · ·																			

$(2) \int \frac{dx}{\sqrt{x^2+9}}$		
•••••	 	•••••

Date: / /

Day:

7.4 Integrals of Rational Functions

Let assume that the rational function takes the form: $q(x) = \frac{f(x)}{g(x)}$. So, f(x) is the numerator and g(x) is the denominator. We will take 4 cases for integrating the rational functions.

Before we start, you should know about how to factor an expression g(x) into irreducible factors.

(1)
$$a^2 - b^2 = (a - b)(a + b)$$

 $(x^2 - 64) = (x - 8)(x + 8)$

(2)
$$ax^2 \pm bx \pm c$$

Let $ax^2 \pm bx \pm c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.
 $x^2 + 3x + 2 \Rightarrow x^2 + 3x + 2 = 0$, then $x = \frac{-3 \pm \sqrt{9 - 4(1)(2)}}{2(1)}$
 $\Rightarrow x = -1$ or $x = -2 \Rightarrow (x+1)(x-2) = 0$.

(3)
$$a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$$

 $x^3 \pm 27 = (x \pm 3)(x^2 \mp 3x + 9)$

Theorem: If $q(x) = \frac{f(x)}{g(x)}$ is a rational function such that degree of f(x) is less than the degree of g(x), then there exists partial fractions $F_1, F_2, ..., F_n$ where $q(x) = F_1(x) + f_2(x) + ... + F_n(x)$. Each of $F_i(x)$ takes the form $\frac{A}{(ax+b)^m} m \in \mathbb{N}$ or $\frac{Ax+B}{(ax^2+bx+c)^m} b^2 - 4ac < 0$.

Case 1: If degree of f(x) is greater than or equal to degree of g(x). For this case, we have three steps:

Step 1: Long division: $\frac{f(x)}{g(x)} = h(x) + \frac{r(x)}{g(x)}$ where h(x) is and r(x) is the remaining.

Step 2: Factor g(x) into irreducible factors.

Step 3: Write the fraction $\frac{r(x)}{g(x)}$ as partial factors.

Example: Evaluate the following integral: $\int \frac{2x - 4x}{x^2 - 2x - 8} dx$

M-106	Calculus	Integration
-------	----------	-------------

Lecture 18 Date: / / Day: Case 2: If degree of f(x) is less than degree of g(x). We ignore step 1 in **Case 1**, so we have two steps: Step 1: Factor g(x) into irreducible factors. Step 2: Write the fraction $\frac{f(x)}{g(x)}$ as partial factors. Example: Evaluate the following integral: $\int \frac{x^2+12x+12}{x^3-4x} dx$

.....

7.4 Integrals of Rational Functions

Exercise: Evaluate the following integrals:

$$\bullet \int \frac{4x^4 + 2x^2 - 1}{x^2 - 1} dx$$

$$\bullet \int \frac{x^2 - 4x + 2}{x^3 - 4x^2 - 5x} dx$$

$$\bullet \int \frac{x-1}{x^2+3x+2} dx$$

$$\bullet \int \frac{dx}{x^2 + 3x - 4}$$

$$\bullet \int \frac{dx}{x^2+8x+7}$$

$$\bullet \int \frac{5x-4}{x^2-4x} dx$$

$$\bullet \int \frac{x^3+x}{x-1} dx$$

$$\bullet \int \frac{e^x}{e^{2x}-4} dx$$

$$\bullet \int_0^1 \frac{2x^5 - x^3 - 1}{x^3 - 4x} dx$$

M-106	Calculus	Integration
M-100	Carcurus	megranon

CHAPTER: 7

Page	
I age.	

Lecture [19]	Date: / /	Day:	7.4 Integrals of Rational Functions
======================================	for of the denominator $g($	x).	Case 4: Quadratic factors of the denominator $g(x)$.
Example: Evaluate the	following integral: $\int \frac{2x^2-1}{(x+1)^2}$	$\frac{25x-33}{12(x-5)}dx$	Example: Evaluate the following integral: $\int \frac{8x^3+13x}{(x^2+2)^2} dx$

Page:	2

Lecture	19

Date: / /

Day:

7.4 Integrals of Rational Functions

Exercise: Evaluate the following integrals: $C^{2}x^{3}-4x-8$

$\bullet \int \frac{2x^3 - 4x - 8}{x^3 - 2x^2 + x} dx$

$$\bullet \int \frac{2x^3 - 4x - 8}{x(x - 1)^2} dx$$

$$\bullet \int \frac{12}{x^4 - x^3 - 2x^2} dx$$

$$\bullet \int \frac{4x+1}{(x-3)(x^2+6x+12)} dx$$

$$\bullet \int \frac{x^3 + x^2 + x + 2}{x^4 + 3x^2 + 2} dx$$

$$\bullet \int \frac{4x^2 - 13x + 6}{(x+2)(x-2)^2} dx$$

$$\bullet \int \frac{2x^2 - 1}{(4x - 1)(x^2 + 1)} dx$$

$$\bullet \int \frac{\cos x}{\sin^2 x + 4\sin x - 5} dx$$

$$\bullet \int \frac{x+1}{(x^2+x+2)^2} dx$$

Lecture	2

Date: / /

Day:

7.5 (1) Integrals Involving the Quadratic Expressions

Sometimes quadratic expression $ax^2 + bx + c$ is irreducible. Because of that we use new technique that is completing square method: $a^2 \pm 2ab + b^2 = (a \pm b)^2$.

Ex 1. The quadratic expression $x^2 - x - 12$ is reducible. $x^2 - x - 12 = (x+3)(x-4)$

Ex 2. The quadratic expression $x^2 - 6x + 13$ is irreducible.

By completing square i.e., we need to rewrite the previous expression as $a^2 \pm 2ab + b^2 = (a \pm b)^2$.

Put $2b = 6 \Rightarrow b = 3 \Rightarrow b^2 = 9$. So, we add and subtract $9 \Rightarrow (x^2 - 6x + 9) + 13 - 9$. $\Rightarrow (x - 3)^2 + 4$

Ex 3. The quadratic expression $x^2 + 8x + 25$ is irreducible.

By completing square, $2b = 8 \Rightarrow b = 4 \Rightarrow b^2 = 16$. So, we add and subtract 16, then the previous expression becomes $(x^2 + 8x + 16) + 25 - 16 = (x + 4)^2 + 9$.

Now, we use the idea to solve the following integrals.

Exercise: Evaluate the following integrals

	•••••	• • • • • • • • • • • • • • • • • • • •	 	•••••	 •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • •	 		 		
• • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •	 •		

$$\Im \int \frac{1}{\sqrt{7+6x-x^2}} dx.$$

																																								• • •
																																								•••
• •	• • •	 •	 •	• • •	•	 •	•••	•	• • •	 	 	•	••	• •	•••	•	•	 •	•	•	•	•	•••	•••	•••	• •	 	•••	•••	••	• • •	 	•	•	•••	•••	• • •	•	•••	• • •

Date: / /

Day:

7.5 (2) Integrals of Rational Functions of sin(x) and cos(x)

We use the substitution $u = tan(\frac{x}{2})$ to reduce the integration of rational functions

that contain on sin(x) and $cos(\bar{x})$ in their denominators.

Let
$$u = tan(\frac{x}{2}) \Rightarrow sec^2(\frac{x}{2}) = u^2 + 1$$
.
Also, this implies $du = \frac{u^2 + 1}{2}dx$.

Now, we write sin(x) and cos(x) using the previous substitution.

$$\begin{split} \sin(x) &= \sin 2\left(\frac{x}{2}\right) = 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) \\ &= 2\frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)}\cos\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) \\ &= 2\tan\left(\frac{x}{2}\right)\cos^2\left(\frac{x}{2}\right) = 2\frac{\tan\left(\frac{x}{2}\right)}{\sec^2\left(\frac{x}{2}\right)} = \frac{2u}{u^2+1}. \end{split}$$

This means if $u = tan(\frac{x}{2})$, then $du = \frac{u^2+1}{2}dx$ and $sin(x) = \frac{2u}{u^2+1}$.

Similarly, we can find that $cos(x) = \frac{1-u^2}{u^2+1}$.

Hint: use the formula $sin(u)sin(v) = \frac{1}{2}[cos(u-v) - cos(u+v)]$, put u = v = x.

Exercise: Evaluate the following integrals

D J	3sin(x)	x)+4cos(x)	\overline{x} ax .			

•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••		 •	
•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •			 •	
		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				 	
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••				 	
								 	

- 2) $\int \frac{1}{1-\sin(x)} dx$ (Homework)
- $\Im \int \frac{1}{1-cos(x)} dx$ (Homework)
- $\textcircled{4} \int \frac{1}{1+cos(x)} dx$ (Homework)
- $\oint \int \frac{1}{5+3\cos(x)} dx$ (Homework)

Lecture	21

Day:

7.7 Improper Integrals

We call $\int_a^b f(x) dx$ a proper integral if

- 1) the interval [a, b] is finite and
- 2) f(x) is continuous on [a, b].

This means if condition 1 or 2 is not satisfied, the integral is **improper**.

We going to study two cases of improper integrals:

Case 1: Interval of the integral is infinite $\int_{a}^{\infty} f(x) \ dx, \ \int_{-\infty}^{a} f(x) \ dx, \ \int_{\infty}^{-\infty} f(x) \ dx.$

Definition: (1) if f is continuous on $[a, +\infty)$, then

$$\int_{a}^{\infty} f(x) \ dx = \lim_{t \to \infty} \int_{a}^{t} f(x) \ dx$$

(2) if f is continuous on $(-\infty, b]$, then

$$\int_{-\infty}^{b} f(x) \ dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) \ dx$$

(3) if f is continuous on R and $a \in R$, then

$$\int_{-\infty}^{\infty} f(x) \ dx = \lim_{t \to -\infty} \int_{t}^{a} f(x) \ dx + \lim_{t \to \infty} \int_{a}^{t} f(x) \ dx$$

Note: An improper integral is convergent if the limit exists as a finite number.

Exercise: Determine whether the integral converges or diverges:

$\boxed{1} \int_0^\infty \frac{1}{4+x^2} \ dx \ .$	

2	f^{∞}	1	dx	
_	$J-\infty$	$\frac{1}{1+x^2}$	ux	•

 • • •

$\frac{x}{1+x^2} dx$.		

M-106	Calculus	Integration

.....

.....

Page:	

M-106 Calculus	Integration		CHAPTER: 7	Page: 2
Lecture 21	Date: / /	Day:	7.7 Improper Integrals	
Case 2: Integrals	with infinite discontinuities	·=====================================	$\boxed{2} \int_0^4 \frac{1}{(4-x)^{\frac{3}{2}}} dx .$	
Definition: (1) if b , then	f is continuous on $[a,b)$ as	nd has an infinite disco	ontinuity at	
	$\int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} \int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} f(x)dx = $	f(x) dx		
(2) if f is continuous	as on $(a, b]$ and has an infin	nite discontinuity at a ,		
	$\int_a^b f(x)dx = \lim_{t \to a^+} \int_t$	$\int_{0}^{a} f(x) dx$		
The integral is conv	vergent if the limit exists a	s a finite number.		
Exercise: Determi	ne whether the integral co	nverges or diverges:		
1				
			···· ····	
			$\frac{1}{3} \int_{0}^{0} \frac{1}{x^{2}} dx$	

$$\begin{array}{c}
3 \int_{-\infty}^{0} \frac{1}{(x-8)^{\frac{2}{3}}} dx . \\
4 \int_{0}^{\infty} \sin x \, dx .
\end{array}$$

$$4 \int_0^\infty \sin x \ dx$$
.

$$\int_{-1}^{1} x^{\frac{-4}{3}} dx$$
.

Date: / /

Day:

5.1 Area Between Curves

Remember: If $f(x) \ge 0$ and continuous on [a, b], then the area of the region under the graph **See Figure 1** is given by

$$A = \int_{a}^{b} f(x)dx$$

Theorem: If f(x) and g(x) continuous and $f(x) \ge g(x)$ for every $x \in [a,b]$, then the area A of the region bounded by the graphs of f and g is

$$A = \int_{a}^{b} (f(x) - g(x)) dx$$

Remark: (1) If we have an equation of the form x = f(y) instead of y = f(x) where f is continuous on [c, d]. We let y be the variable of the integral. Then, the area is

$$A = \int_{c}^{d} f(y) \ dy$$

(2) If f(y) and g(y) are two continuous functions such that $f(y) \ge g(y)$ for every $y \in [c,d]$, then the area A of the region bounded by the graphs of f and g is

$$A = \int_{c}^{d} (f(y) - g(y)) dy$$

Exercise 2: Sketch the region by the graphs of $y = x^3$ and y = x, then

Lecture	22

Date: / /

Day:

5.1 Area Between Curves

find its area.

Exercise 1: Express the area of the shaded region as a definite integral then find the area.

	1
Exercise 3: Sketch the region by the graphs of $x = 3 - y^2$ and $x = y +$ hen find its area.	1
hen find its area.	1,
hen find its area.	1,
hen find its area.	1.
hen find its area.	1,
hen find its area.	1
hen find its area.	1,
hen find its area.	1,
hen find its area.	1.
hen find its area.	1.
hen find its area.	1,
hen find its area.	1.
hen find its area.	1,
hen find its area.	1,
hen find its area.	1.
hen find its area.	1,

Page: 1

Lecture 22

Date: / /

Day:

Page: 2

Lecture 22

Date: / /

Day:

Date: / /

Day:

5.2 Volume of Revolution: (1) Disk Method

Let R_x be a region of f(x) where f is continuous and $f \geq 0$. Let R_x be bounded by the graph and x-axis and x = a, x = b. Revolution of the region about a line (x-axis or y-axis) generates a solid called solid of revolution.

Example 1:

Consider the graph of f(x) and the region R_x in Figure 1. Revolution of R_x about x-axis generates a solid of revolution given in Figure 2.

Example 2:

Let f(x) be a constant function, for example f(x) = 3 as in Figure 3. The region R_x is a rectangular and revolution of R_x about x-axis generates a circular cylinder given in Figure 4.

Example 3:

Consider the graph of f(y) and the region R_y in **Figure 5**. Revolution of R_x about x-axis generates a solid of revolution given in Figure 6.

Volume of the Solid of Revolution:

(1) Disk Method

Let f be continuous on [a, b] and let R_x be a region bounded by the graphs, x-axis and the points x = a, x = b. Let S be a solid generated by revolving R_x about x-axis.

Let P be a partition of [a, b] and $w_k \in [x_{k-1}, x_k]$. For each $[x_{k-1}, x_k]$, we form a rectangular, its high is $f(w_k)$ and its width is Δx_k .

Revolution of the rectangular about x-axis generates a circular disk as shown in Figure 7. Its radius and high are

$$r = f(w_k)$$
$$h = \Delta x_k$$

From this, the volume of the circular disk is

$$V_k = \pi(f(w_k))^2 \Delta x_k$$

The sum of volumes of circular disks approximately gives the volume of the solid of revolution given in **Figure 8**:

$$V = \sum_{k=1}^{n} \Delta V_k = \sum_{k=1}^{n} \pi(f(w_k))^2 \Delta x_k = \int_a^b \pi[f(x)]^2 dx$$

Date: / /

Day:

5.2 Volume of Revolution: (1) Disk Method

From the previous discussion,

(1) The volume V of the solid of the revolution of the region bounded by the graph of y = f(x) and x = a, x = b about x-axis is

$$V = \int_a^b \pi [f(x)]^2 dx$$

(2) Let f be continuous on [c,d]. The volume V of the solid of the revolution of the region bounded by the graph of x = f(y) and y = c, y = d about y-axis is

$$V = \int_{c}^{d} \pi[f(y)]^{2} dy$$

Example: Sketch the region R bounded by the graphs of the equations $y = \sqrt{x}$, x = 4, y = 0.

Then, find the volume of the solid generated if R is revolved about x-axis.

Solution:

The volume:

$$V = \int_0^4 \pi [\sqrt{x}]^2 \ dx$$

$$=\pi \int_0^4 x \ dx = \pi \left[\frac{x^2}{2}\right]_0^4 = 8\pi.$$

Exercise: Sketch the region R bounded by the graphs of the equations $y=x^3-1,\,x=0,\,y=7.$

Then, find the volume of the solid generated if R is revolved about y-axis.

Date: / /

Day:

5.2 Volume of Revolution: (2) Washer Method

Washer Method

The washer method is generalization of the disk method for a region between two functions f(x) and g(x) as shown in the following **Figure 1**. Let R_x be a region bounded by the graphs of f(x) and g(x) such that f(x) > g(x) and by x = a, x = b.

<u>Note:</u> Revolution of a rectangular generates a solid likes a washer where there are two radius: outer radius and inner radius.

Volume of the washer = π [$r_1 - r_2$] (thickness)

where r_1 is the outer radius and r_2 is the inner radius. For a partition $P = \{x_1, x_2, ..., x_n\}$ and $w_k \in [x_{k-1}, x_k]$, the volume of the washer is

$$V = \pi ([f(w_k)]^2 - [g(w_k)]^2) \Delta x_k$$

Since the whole solid S is formed by a set of washers, then the volume of S can be obtained by summing the volume of washers.

Summary:

(1) If R_x is revolved about x-axis, we have a solid S with a hole through that solid. The volume of S is the difference between the volumes of two solids generated by f and g:

$$V = \pi \int_{a}^{b} ([f(x)]^{2} - [g(x)]^{2}) dx$$

(2) If R_y is revolved about y-axis, we have a solid S with a hole through that solid. The volume of S is the difference between the volumes of two solids generated by f and g:

$$V = \pi \int_{c}^{d} ([f(y)]^{2} - [g(y)]^{2}) dy$$

Example: Evaluate the volume of the solid generated by revolution of the bounded region by graphs of the following two functions $y = x^2$ and y = 2x about x-axis.

Solution:

The volume of the solid S is $V=\pi\int_0^2[2x]^2-[x^2]^2\ dx=\pi\int_0^2[4x^2]-[x^4]\ dx=\pi\left[\frac{4x^3}{3}-\frac{x^5}{5}\right]_0^2=\frac{64}{15}\pi$

M-106	Calculus	Integration
111-100	Carcaras	inicgration

CHAPTER: 5

Page: 2

Lecture 24	Date: / /	Day:	5.2 Volume of Revolution: (2) Washer Method
Exercise 1: Evalu	ate the volume of the sol	lid generated by revolution we functions $x = \sqrt{y}$ and $x = \sqrt{y}$	
	•••••		
	•••••		
•••••	•••••		
•••••	•••••		
	•••••		
•••••			

Date: / /

Day:

5.3 Volume of Revolution: (3) Method of Cylindrical Shells

As shown in **Figure 1**, let r_1 be outer radius of the shell r_2 be inner radius of the shell h be high of the shell $\Delta r = r_2 - r_1$ be thickness of the shell $r = \frac{r_1 + r_2}{2}$ be average radius of the shell

The volume of the cylindrical shell

$$V = \pi r_2^2 h - \pi r_1^2 h$$

$$= \pi (r_2^2 - r_1^2) h$$

$$= \pi (r_2 + r_1) (r_2 - r_1) h$$

$$= 2\pi (\frac{r_2 + r_1}{2}) h (r_2 - r_1)$$

$$= 2\pi r h \Delta r$$

Now, consider the graph given in **Figure 2**. Revolution of the region R_x about y-axis generates a solid given in **Figure 3**.

Let P be a partition of the interval [a, b] and let w_k be the mid point of $[x_{k-1}, x_k]$ (see **Figure 2**).

Revolution of the rectangular given in Figure 2 about y-axis generates a cylindrical shell where average radius $= w_k$

$$high = f(w_k)$$

thickness =
$$\Delta x_k$$

Hence, the volume of the cylindrical shell

$$V_k = 2\pi w_k f(w_k) \Delta x_k$$

To evaluate the volume of the whole solid, we sum the volume of all cylindrical shells. This means

$$V = \sum_{k=1}^{n} V_k = 2\pi \sum_{k=1}^{n} w_k f(w_k) \Delta x_k$$

From Riemann Sum $\sum_{k=1}^{n} w_k f(w_k) \Delta x_k = \int_a^b x f(x) dx$, we have

$$V = 2\pi \int_{a}^{b} x f(x) \ dx$$

Similarly, if the revolution of the region about \underline{x} -axis, the volume of the solid of revolution is

$$V = 2\pi \int_{c}^{d} y f(y) \ dy$$

Date: / /

Day:

5.3 Volume of Revolution: (3) Method of Cylindrical Shells

Example: Sketch the region R bounded by the graphs of the equations y = $2x - x^2$, x = 0.

Then, by method of cylindrical shells, find the volume of the solid generated if R is revolved about y-axis.

Since the revolution of the region R_x about y-axis, then $V=2\pi\int_0^2x(2x-x^2)~dx$

$$V = 2\pi \int_0^2 x(2x - x^2) \ dx$$

$$= 2\pi \int_0^2 2x^2 - x^3 \ dx$$

$$=2\pi \left[2\frac{x^3}{3} - \frac{x^4}{4}\right]_0^2$$

$$= 2\pi \left[\left(2\frac{8}{3} - \frac{16}{4} \right) - \left(0 \right) \right]$$

$$=2\pi\big[\tfrac{16}{3}-4\big]$$

$$=2\pi \left[\frac{16-12}{3}\right]$$

$$=2\pi\left[\frac{4}{3}\right]$$

$$=\frac{8}{3}\pi$$

Exercise: Find the volume of the region bounded by $y = \sin x$, $x = 0$, $y = 0$, $x = \pi$ and revolved about y-axis.

 $(c) \sinh(4)$

 $(d) \cosh(4)$

Lecture 26

Date: / /

Day:

5.5 Arc Length and Surface of Revolution

 $(a) \sinh(A) = 1$

(1) Arc Length:

Definition:

(1) Let y = f(x) is a smooth function (it has derivatives of all orders everywhere in its domain) on [a, b]. The length of the arc of f from x = a to x = b is

$$\boxed{L(f) = \int_{a}^{b} \sqrt{1 + \left[f'(x)\right]^{2}} \ dx}, f^{'}(x) = \frac{dy}{dx}$$

(2) Let x=g(y) is a smooth function on [c,d]. The length of the arc of g from y=c to y=d is

$$\boxed{L(g) = \int_{c}^{d} \sqrt{1 + \left[g^{'}(x)\right]^{2}} \ dy}, g^{'}(x) = \frac{dx}{dy}}$$

Exercise 1: Choose the correct answer

(1) The arc length of the graph of the curve $y=\cosh x,\, 0\leq x\leq 4$ is equal to

(b) $\cosh(4) = 1$

(a) siiii(4)	1	(b) cosii(4)	1	(c) simi(4)	(d) cosi(4)
	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

(2) The arc length of the graph of the curve y=4x, from A(0,0) to B(1,4) is equal to

(a)
$$\sqrt{17}$$

(b)
$$\sqrt{5}$$

(c)
$$4\sqrt{17}$$

(d)
$$4\sqrt{5}$$

Date: / /

Day:

5.5 Arc Length and Surface of Revolution

(2) Surfaces of Revolution:

Let y = f(x) be a smooth function on [a, b]. Revolution of the curve about x-axis or y-axis generates surface called **Surface of Revolution**.

Definition:

(1) Let y = f(x) be a smooth function on [a, b]. The surface area S.A generated by revolving the curve of f about **x-axis** from x = a to x = b is

$$S.A = 2\pi \int_{a}^{b} |f(x)| \sqrt{1 + [f'(x)]^{2}} dx$$

NOTE: If the revolution of the curve of f is about **y-axis**, then

$$S.A = 2\pi \int_{a}^{b} x\sqrt{1 + \left[f'(x)\right]^{2}} dx$$

(2) Let x = g(y) be a smooth function on [c, d]. The surface area S.A generated by revolving the curve of g about **y-axis** from y = c to y = d is

$$S.A = 2\pi \int_{c}^{d} |g(y)| \sqrt{1 + [g'(x)]^{2}} dy$$

NOTE: If the revolution of the curve of g is about **x-axis**, then

$$S.A = 2\pi \int_{c}^{d} y \sqrt{1 + \left[g'(x)\right]^{2}} \ dy$$

Exercise 2: Choose the correct answer

- (1) The surface area generated by revolving the curve of the function $\sqrt{4-x^2}$, $-2 \le x \le 2$ around x-axis is equal to
- (a) 16π
- (b) 4π
- (c) 8π
- (d) 6π

- (2) The surface area resulting by revolving the graph of the equation y = x, $0 \le y \le 4$ around y-axis is equal to
- (a) $16\sqrt{2}\pi$ (b) $\sqrt{2}\pi$ (c) $16\sqrt{2}$ (d) $8\sqrt{2}\pi$

Date: / /

Day:

9.1 Parametric Equations of Plane Curves

If f is continuous, the graph of y = f(x) is called a plane curve.

Example: Let $y = x^2$ for $-2 \le x \le 2$. The equation is continuous and its graph given in the following figure.

Now, let x=t and $y=t^2$ for $-2 \le t \le t$. then, we have the same graph. The last equations are called parametric equations for the curve C.

Note:

- (1) Parametric equations give the same graph of y = f(x)
- (2) Parametric equations give the orientation of C.
- (3) To find the parametric equations, we introduce a third variable t called a parameter. Rewrite x and y as functions of t, then we have the parametric equations

x = f(t) parametric equation for x

y = g(t) parametric equation for y

Exercise 1: For the following curves,

- (a) find an equation in x and y whose graph contains the points on the curve.
- (b) sketch the graph of C.
- (c) indicate the orientation.

(1)
$$x = t - 2$$
, $y = 2t + 3$, $0 \le t \le 5$

(2)
$$x = 2\sin t$$
, $y = 3\cos t$, $0 \le t \le 2\pi$

	• • • • • • • • • • • • • • • • • • • •	•••••		 	 	 	
•••••	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 •	 •	 	

(3)
$$x = t^2$$
, $y = 2 \ln t$, $t > 0$

																			••••	
••••	• • • •	 • • • •	• • • •	 ••••	• • • • •	• • • • •	••••	••••	• • • • •	• • • • •	• • • • •	• • • • •	• • • • •	••••	 • • • • •	• • • • •	• • • • •			
••••	• • • •	 	• • • •	 • • • •	• • • • •	• • • • •	• • • • •		• • • • •	• • • • •		• • • • •	• • • • •	• • • • •	 		• • • • •	••••		· • •

(4)
$$x = \sin t$$
, $y = \cos t$, $0 < t < \pi$

• • • • • • •	 • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	 • • • • • • •	• • • • • • •	• • • • • • •	• • • • • • •	 •	• • • • • • •	• • • • • • • •	
• • • • • • •	 		• • • • • • •	 				 			
• • • • • •	 			 				 			

M ₋ 106	Calculus	Integration
101-100	Calculus	miegranon

CHAPTER: 9

Page:	٦
I age.	4

Lecture 27

Date: / /

Day:

9.2 Arc Length and Surface Area

Here, we are going to find the slope of the tangent, the second derivative,

the length of the arc and the area of the surface of revolution.

(1) Slope of the tangent line at a point:

If a smooth curve C given by x = f(t) and y = q(t), then the slope of tangent line to C at point P(x, y) is

$$y' = \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \text{ if } \frac{dx}{dt} \neq 0$$

(2) Second derivative in a parametric form:

$$y'' = \frac{d^2y}{dx^2} = \frac{d(y')}{dx} = \frac{\frac{dy'}{dt}}{\frac{dx}{dt}}$$

(3) Length of the arc of the curve:

The length of the curve x = f(t), y = q(t) where a < t < b is given by

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

(4) Area of the surface of revolution of a curve:

(i) Let the curve C is given by x = f(t), x = g(t) where $a \le t \le b$. If $y \ge 0$ on [a,b], then the area S.A of the surface generated by revolving C about **x-axis** is

$$S.A = 2\pi \int_{a}^{b} y \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

(ii) If the curve C is revolved about y-axis where $x = f(t) \ge 0$ on [a, b], then the area S.A of the surface

$$S.A = 2\pi \int_{a}^{b} x \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

Exercise 2: Choose the correct answer

- 1) The slope of the tangent line at the point corresponding to $t = \frac{\pi}{4}$ on the curve given parametrically by the equations $x = \sin t$, $y = \cos t$; $0 < t < 2\pi$ is
- (a) -1(b) 1 (c) 0 (d) $\frac{1}{3}$

2) The length of the curve C: $x = 2\cos t$, $y = 2\sin t$, 0 < t < 1 is equal to (a) 1 (b) $\sqrt{2}$ (c) 2

•••••	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
					•••••		• • • • • • • • • • • • • • • • • • • •		

3) The surface area resulting by revolving the graph of the parametric equation x = 3t, y = 3t, $0 \le t \le 1$ around the x-axis is equal to (a) $9\sqrt{2}\pi$ (b) $18\sqrt{2}\pi$ (c) $24\sqrt{2}\pi$ (d) $\frac{9}{2}\sqrt{2}\pi$

•••••	•••••	• • • • • • • • • • • • • • • • • • • •	 	•••••	 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

Exercise 3: Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$, then evaluate each at the indicated value of the parameter.

 $x = 2\cos t$, $y = 2\sin t$ at $t = \frac{\pi}{4}$.

Page: 3

Lecture 27

Date: / /

Day:

9.1 Parametric Equations of Plane Curves

(1) Straight line

(C)

(2) Parabola

(A)

(D)

(B)

(3) Circle

Date: / /

Day:

9.1 Parametric Equations of Plane Curves

(4) Ellipse (A)

(B)

(5) Hyperbola (A)

(B)

Date: / /

Day:

9.3 The Polar Coordinates System

Previously, we used Cartesian coordinate to determine points (x, y) as shown in **Figure 1**. We are going to study a new coordinate system called **Polar Coordinates**.

The polar coordinate is a two-dimensional coordinate system. It contains a fixed point O (Pole) and each point on a plane is determined by a distance (r) from the pole and an angle (θ) from a fixed direction as shown in **Figure 2**.

Example 1:

Note: In the Cartesian coordinate system, each point in the plane corresponds to a unique ordered pair (x, y) of numbers. However, this is not true in the polar coordinate where each point has infinite number of polar coordinate pairs.

Example 2: Represent the following polar coordinates $(2, \frac{\pi}{4}), (2, \frac{9\pi}{4})$ and $(-2, \frac{\pi}{4})$.

Conclusion: the polar coordinates represent the same point. Generally, we can write

$$(r, \theta + 2n\pi) = (r, \theta) = (-r, \theta + (2n+1)\pi) \quad n \in \mathbb{Z}$$

(1) Relationship between Polar and Rectangular Coordinates

Let (x, y) be rectangular a coordinate and (r, θ) be a polar coordinate. Let the pole on the origin point and polar axis on x-axis, and the line $\theta = \frac{\pi}{2}$ on y-axis as shown in the following figure.

From the triangle O A P

$$\cos \theta = \frac{x}{r} \Rightarrow x = r \cos \theta$$

 $\sin \theta = \frac{y}{r} \Rightarrow y = r \sin \theta$

From this,
$$x^2 + y^2 = (r\cos\theta)^2 + (r\sin\theta)^2 \Rightarrow x^2 + y^2 = r^2(\cos^2\theta + \sin^2\theta)$$

Then, $x^2 + y^2 = r^2$.

WI-100 Calculus I	ntegration	CI	AFIER: 9	rage: 2
Lecture 28	Date: / /	Day:	9.3 The Polar Coordinates System	
Exercise 1: Choose	e the correct answer		(2) Slope of a tanger The slope of a tangent	nt line line to the graph of $r = f(\theta)$ is given by
ic		$=(1,\frac{\pi}{6}),$ then its (x,y) -coordi	nate	$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{dx}}$
(a) $(\frac{\sqrt{3}}{2}, \frac{1}{2})$ (b) $(\frac{\sqrt{3}}{2}, \frac{1}{2})$	(c) $(\frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2})$ (c) $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$ (c)	(d) $(1,0)$		$\frac{dx}{d\theta}$
			Note: (1) If $\frac{dy}{d\theta} = 0$ such that	$\frac{dx}{d\theta} \neq 0$, the curve has a horizontal tangent line.
			(2) If $\frac{dx}{d\theta} = 0$ such that	$\frac{dy}{d\theta} \neq 0$, the curve has a vertical tangent line.
			Exercise: Choose the	correct answer
			(1) The slope of the tar (a) $\frac{\pi}{2}$ (b) 0 (c)	ngent line to the curve: $r = \cos \theta$ at $\theta = \frac{\pi}{4}$ is $\frac{\pi}{4}$ (d) 1
(2) If a point has xy	y-coordinates where (x, y)	= $(1,1)$, then its (r,θ) -coordi	nate	
(a) $(1, \frac{\pi}{4})$ (b) $(2, \frac{\pi}{4})$	$(c) (\sqrt{2}, \frac{-\pi}{4}) $ (d) ($-\sqrt{2}, \frac{5\pi}{4})$		
			(2) The slope of the tar (a) 1 (b) -1 (c)	agent line to the curve: $r=2$ at $\theta=\frac{\pi}{4}$ is 0 (d) ∞
•••••				
•••••	***************************************	•••••		

Date: / /

Day:

9.3 The Polar Coordinates System: Graphs

(3) Graphs in Polar Coordinates

Test of Symmetry in Polar System:

(a) Symmetry about the polar axis (x-axis)

The graph of $r = f(\theta)$ is symmetric with respect to the polar axis if substitution of

$$-\theta$$
 for θ

does not change the equation $r = f(\theta)$.

Example 1: Consider the graph of $r = 4\cos\theta$.

Since $\cos(-\theta) = \cos \theta$, then the graph is symmetric about the polar axis.

(b) Symmetry about the vertical line $\theta = \frac{\pi}{2}$ (y-axis)

The graph of $r = f(\theta)$ is symmetric with respect to the vertical line if substitution

- (i) $\pi \theta$ for θ OR
- (ii) -r for r and $-\theta$ for θ does not change the equation $r = f(\theta)$.

Example 2: Consider the graph of $r = 4 \sin \theta$.

Since $\sin(\pi - \theta) = \sin \theta$ and also, $-r \sin(-\theta) = r \sin \theta$, then the graph is symmetric about the vertical line $\theta = \frac{\pi}{2}$.

(c) Symmetry about the pole $\theta = 0$ (origin in xy-plane)

The graph of $r = f(\theta)$ is symmetric with respect to the pole if substitution of

- (i) -r for r OR
- (ii) $\pi + \theta$ for θ does not change the equation $r = f(\theta)$.

Example 3: Consider the graph of $r^2 = a^2 \sin 2\theta$. Note: $(-r)^2 = a^2 \sin 2\theta = r^2 = a^2 \sin 2\theta$. Also, $r^2 = a^2 \sin[2(\pi + \theta)] = a^2 \sin(2\pi + 2\theta) = a^2 \sin 2\theta$. This means the graph is symmetric about the pole.

1 Lines in Polar Coordinates

 $\overline{\text{(i)}}$ General equation of a straight line ax + bx = c, its polar equation is

$$r = \frac{c}{a\cos\theta + b\sin\theta}$$

(ii) Equation of a vertical line x = k, its polar equation is

$$r = k \sec \theta$$

HOW? $r = k \sec \theta \Rightarrow r = \frac{k}{\cos \theta} \Rightarrow r \cos \theta = k \Rightarrow x = k$. (iii) Equation of a horizontal line y = k, its polar equation is

$$r = k \csc \theta$$

HOW? $r = k \csc \theta \Rightarrow r = \frac{k}{\sin \theta} \Rightarrow r \sin \theta = k \Rightarrow y = k$.

(iv) Equation of a line that passes the origin point and makes an angle θ_0 :

$$\theta = \theta_0$$

Example: Sketch the graph of the polar equation $\theta = \frac{\pi}{2}$.

Date: / /

Day:

9.3 The Polar Coordinates System: Graphs

2 Circles in Polar Coordinates

- (i) A circle its center at O and radius a: r = a
- (ii) A circle its center at (a,0) and radius |a|: $r = 2a\cos\theta$
- (iii) A circle its center at (0, a) and radius |a|: $r = 2a \sin \theta$

3 Cardioid

$$\overline{r} = a(1 \pm \cos \theta) \text{ OR } r = a(1 \pm \sin \theta)$$

$$r = a(1 + \cos \theta)$$
 $r = a(1 - \cos \theta)$ $r = a(1 + \sin \theta)$ $r = a(1 - \sin \theta)$

4 Limacons

$$\overline{r} = a \pm b \cos \theta \text{ OR } r = a \pm b \sin \theta$$

(1)
$$r = a \pm b \cos \theta$$

(i) $r = a + b\cos\theta$

$$\frac{a}{b} < 1$$
 $1 < \frac{a}{b} < 2$ $\frac{a}{b} \ge 2$

(ii) $r = a - b\cos\theta$

- (2) $r = a \pm b \sin \theta$
- (i) $r = a + b \sin \theta$

(ii) $r = a - b \sin \theta$

5 Roses

 $\overline{r} = a \cos n\theta \text{ OR } r = a \sin n\theta \text{ where } n \in \mathbb{N}.$

(i)
$$r = a \cos n\theta$$

 $n = 2$ $n = 3$ $n = 4$

Note: If n is odd, there are n petals. If n is even, there are 2n petals.

6 Spiral of Archimedes

 $\overline{r} = a\theta$ where a > 0.

Exercise: Sketch the following:

- r = 3.
- $r = 2\cos\theta$.
- $r = 6\sin\theta$.
- $r = 6 6\sin\theta$.

CHAPTER: 9

ъ	Г
Page:	

Lecture 30	Date: / /	Day:	9.4 Integrals in Polar Coordinates
	f is continuous and non-		
$\beta \leq 2\pi$. The area α and $\theta = \beta$ is	A of the region bounded	by the graphs of $r = f$	$(\theta), \ \theta = \alpha,$
<i>p</i>	$\begin{bmatrix} 1 & \int^{\beta} \int f(x) dx \end{bmatrix}$	12 10	
	$A = \frac{1}{2} \int_{\alpha}^{\beta} [f(\theta)]$	$\frac{1}{2} = \frac{1}{2} \frac{\partial}{\partial \theta}$	
	continuous and non-negat	tive on $[\alpha, \beta]$, the area of	f the region
$R = \{(r, \theta) : \alpha \le \theta \le$	$\leq \beta, g(\theta) \leq r \leq f(\theta)$ } is		
	$1 \int_{-1}^{\beta} \left(f(s) \right)^2$	((0)) 21 10	
	$A = \frac{1}{2} \int_{\alpha}^{\beta} \left[\left(f(\theta) \right)^{2} - \right]$	$(g(\theta)) \mid d\theta$	
Exercise 1: Find equation	the area of the region b	ounded by the graph of	f the polar
(i) $r = 2\cos\theta$.			
(ii) $r = 6\sin\theta$.			
(ii) $r = 0$ sin v .			
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
•••••	•••••		$\begin{array}{c c c c c c c c c c c c c c c c c c c $

M-106	Calculus	Integration
111	Carcaras	IIIOCSIGUIOII

CHAPTER: 9

Page: 2

Lecture 30	Date: / /	Day:	9.4 Integrals in Polar Coordinates
	e area of the region that $= \sin \theta$, $r = \sqrt{3} \cos \theta$.	is inside the graphs of	Exercise 3: Find the area of the region that is outside the graph of $r=3$ and inside the graph of $r=2+2\cos\theta$.
••••••	•••••	•••••	
•••••	•••••		
	•••••		
•••••			
•••••		•••••	
•••••		•••••	
•••••		•••••	
•••••			

Lecture 31	Date: / /	Day:	9.4 Integrals in Polar Coordinates: Arc Length Surface of Revolution
	area of the region that is $3\cos\theta$ and $r = 3 - 3\cos\theta$		(1) Arc Length of a Curve C in Polar Coordinates: To find arc length of a curve C in polar coordinates, we use
			$L = \int_{\alpha}^{\beta} \sqrt{r^2 + (\frac{dr}{d\theta})^2} \ d\theta$
•••••	•••••		Exercise 1: Find the length of the curve
			(i) $r = 1 + \cos \theta$
•••••		•••••	
•••••			
			(iii) $r = 2 - 2\cos\theta$
			(m) / 2 2000
•••••		•••••	
	•••••		

M-106 Calculus Integration			CHAPTER: 9	Page: 2
Lecture 31	Date: / /	Day:	9.4 Integrals in Polar Co	pordinates: Arc Length Surface of Revolution
(2) Surface of revolution in Polar Coordinates: Surface of revolution generated by revolving C about (A) Polar axis:				Find the area of the surface generated by revolving the $\sin^2\theta$ about the line $\theta = \frac{\pi}{2}$.
	$S = \int_{\alpha}^{\beta} 2\pi y \sqrt{(r)^2} - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{\beta} dx$	$\left[-\left(\frac{dr}{d\theta}\right)^2\right]d\theta$		
(B) The line $\theta =$	$\frac{\pi}{2}$:			
	$S = \int_{\alpha}^{\beta} 2\pi x \sqrt{(r)^2} - \frac{1}{2\pi} \left(\frac{1}{2\pi} \right)^{-1} dx$	$+\left(\frac{dr}{d\theta}\right)^2$ $d\theta$		
Remember:				
	$x = r \cos \theta$			
	$y = r\sin\theta$			
Exercise 2: Find $r = 2 + 2\cos\theta$ about	the area of the surface ge ut the polar axis.	nerated by revolving		
•••••				

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....