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for every z €

Example: Let F(z) = 2% and f(x) = 2z,
then F'(z) = 2z = f(x).
This means F'(z) is an anti-derivative of f(z) = 2z.

Note: There are many anti-derivatives of f(x). From the previous example,

f(z) = 2z, the functions

F(zx)=a*+2
F(x) fo%

F(r)=2%+c¢
where c is constant.

Relationship between two different anti-derivatives of a function:

Let F and G be two anti-derivatives of f on an interval I, then
F(z) =G(z) +c
G(z)=F(x)+c¢

Example: Let F(z) = sin(z) and G(z) = sin(z) + 2 and let f(z) = cos(x).

Clearly, F and G are two anti-derivatives of f and F(z) = G(x) — 2.

Indefinite Integrals:

The form of the indefinite integral is [ f(z) dz = F(x) + ¢
where

J f(z) dz is indefinite integral of f(z),

f(zx) is the integrand,

x is the variable of the integration and

¢ is constant of the integral.

CHAPTER: 4

4.1 Anti-derivatives

Derivative Indefinite Integrals

L@)=1 Jldz=x+c

d zn«%»l o n n+1
gr)=1Ln#1 [ de =y +e

%(sin x) =cos x Jcos dz =sin x4 ¢

4 (—cos ) =sin [ sin x dv = —cos x + ¢

A (tan z) =sec? z [sec? z dx =tan z+c

L (—cot ) =csc? Jesc? xdx=—cot z+c

4 (sec z) =sec z tan z [sec ztan z dx =sec z+c
%(fcsc x) =csc x cot x Jesc @ cot xdr=—csc z+c

Some Important Formulas:

1) [4(f(x) dz = f(z)+c
ngf ) dx = f(z)
4)

m—cff
dac—ff )£ [g(z) d

%H

Exercise: Evaluate the following integrals:
1) [4z + 3 d=x
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. . . . . / o 2 . .
Exercise 2: Evaluate the following integrals flx:}:‘c%si.. 5101V€ (Elie dlfjte(ge)nt_lig equation f (z) = 62" + x — 5 subject
(1) f(\/ﬂf—i—ﬁ)da? o the initial condition =2.

Solution:

[ f(z) dz = [(62%+z—5) dx

f(@) =223+ 122 — bz +c

Let = 0 and use the condition f(0) =2. f(0)=0+0—-04+c=c=2.

The solution of the differential equation is f(z) = 22 + 322 — 5z 4+ 2.

Exercise: Solve the differential equation f ! (x) = 5cosx + 2sinx subject
to the initial condition f(0) =3 and f (0) = 4.

Solution:

ff//(x) dr = [(5cosz + 2sinz) d

f'(x) =5sinz —2cosx + ¢

3) [(z+1)° da Let z = 0 and use the condition f(0) = 3.

f(0) =5sin0 — 2cos0 + ¢ = ¢ = 6. Hence

.............................................................................................................. /

f(z)=>5sinx —2cosz +6

We integrate a second time:

.............................................................................................................. [ () do = [(5sine — 2cos +6) di

f(z) = —5cosx — 2sinz + 6z + ¢

sin 72
) iy
(4) [wsinz? dz dx
Let z = 0 and use the condition f(0) = 4.

) 3z + 1)* do /
) J¢ ) f(0) =—5cos0—2sin0+ 6(0) + ¢ = ¢ = 8. Hence, the solution is

(6) [(22° +1)7(62%) dx flx) = —5cosw — 2sina + 62 +8 .
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4.2 Change of a Variable in Indefinite Integral (Substitution Method)

Here, we can’t do the integration without the derivative of 3x, so we use the

substitution method.

The substitution method can be summarized in the following formula:

S de =" el n# -1

To find the previous integration, we let u = 3z + 1 = du = 3dx = %du =dx.

By substltutlng that into the integral, we have
3fu‘*dufl“—Jrcf—Jrc

Then, [(3z+1)* dx = %7(3‘”;1)5 +c= 7(3”:1;1)5 +c

Alternatively, we multiple and divide the integral by 3
5
$[3 @B+ 1)t de = 7(376121) +c.

4) [(4z +1)" dx
To do the integral, we the derivative of 4x.

Let u=4z+1= % du = dx, by substituting

n+1
n+1

fu dr=%— +¢

But, u = 4z + 1, the value of the integral is “— =%

(4z+1)"F!

+c

Remember

fx”da::

n+1
n+1

B LRTEPETTTPPPYRPPPRITIEE
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8) f z cos (x°42)

5) [3 cos 6z dx sin (2%+2)
9) | =L dx
6) f cosr‘fl 4z dx ) f Jrni

a) +vsin x +4+c¢  (b)Vsin 2 +4+c
Vsin x +4+c¢  (d) —2vsin z+4+¢

—_~
o
=
N o
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Let {a1, as, ..., a, } be a set of numbers, the symbol Y _7'_, aj, represents their sum: (1) ,10:1 3

n
Zak:a1+a2+...+an ..............................................................................................................
k=1

Example: Evaluate the folloWIng e e e e e e

(1) Yy (kb + 1)k (3) Ypoy K

SO (k1R = (2)1)2 + (3)(2)2 + (4)(3)2=2+12+36 = 50

k
Exercise 2: Express the following sum in terms of n:
Sonoi (K 4+ k* 4+ 3k +5)

TIREOTCINI: ettt

(]_) ZZ:1CZC+C+~~+C:”C' ..............................................................................................................

(2) Y (B b)) =3 1 Gk D a1 Bk s

(3) Yop_jcar=c > p_,ay for any c € R. Exercise 3: Choose the correct answer

(4) > k= "("2+1) 1) If 32—, (k + a) = 14, then the value of a is equal to:

(5) Yoy k2 = nnrlEntl) @1 ()4 (-4 (d)-1

(6) Tr_ k3 = [RIED)Z e

n +1)(2n4+1)(3n%+3n—1
(7) Zk:l k= ol 2 3())( = =)
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Riemann Sum

Let f be a defined function on the closed interval [a,b] and let
P ={xg,x1,...,x,} be a partition of [a,b].

Let wy € [xp—1,2k), K =1,2,3,...,n.

Then a Riemann sum of f for P is

Definition:

(1) A partition P of a closed interval [a,b] is decomposition of the interval into
subintervals of form

[0, x1], [1, T2], [T2, 3], oy [Tn—1, Tn]

for any a positive integer n such that a = zp < r1 < 22 < ... < Tp_1 < T,

Ry =Y flwi)Axy.
Sub-intervals Length k=1
First interval = [xg, z1] Az =121 — 20
Second interval = [x7, x2] Azg =29 — 11 Example: Find the Riemann sum R, for the function f(z) =3 —4x on
Third interval = [, z3] Axs = 23 — T3 the partition P = {—1,0,2,4,6} of the interval [—1, 6] by choosing
(i) the left-hand end point.
(ii) the right-hand end point.
n-th interval = [x,,_1, 4] Az, =z, — Tp_1 (iii) the mid point.
Solution:
(2) Norm of partition is (|| P ||) is the largest number of Axy, Axo, ..., Azy,.
Sub-intervals Length
Example: Let P = {0,1.1,2.6,3.7,4.1,5} be a partition of the interval [0, 5]. First interval = [—10, 0] Ax;=0—-(-1)=1
(1) F%nd the length of each sub-intervals. Second interval —
(2) Find the norm || P ||. L
Third interval =
Solution: Fourth interval =
Sub-intervals Length
First interval = [0, 1.1] Az =11-0=1.1 i) The left-hand end point.
o e = o= X A= D) 5 0@+ 1))+ S)
o ~ R, =30 flwp)Azy, = F(—1)(1) + £(0)(2) + F(2)(2) + f(4)(2
Third interval = — 7 (3)(2) + (=5)(2) + (—13)(2) = —23
Fourth interval =
Fifth interval = (ii) The right-hand end point.
() Thenorm || P I[= 15 .
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Exercise 1: Let A be the area under the graph of f(z) =2 +1 e
from x =1 to x = 3. Find the area A by taking limit of Riemann sum.

Exercise 2: Choose the correct answer

.............................................................................................................. The limit lim,,_ oo 22:1(%)
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Definite Integral:

Let f be a function defined on closed interval [a,b]. The definite integral of f
frOom @ 0 D IS ettt e et e ettt e e e e e ettt et e e e e e

b n
/ f(z) dz = H}}f‘gozf(wkmxk ..............................................................................................................
@ k=1

The numbers a and b are called the limits of integration.

Example: Evaluate the following integrals:

(1) [{la?+1 da
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(3) If f02 f(x) dz =4 and f02 g(z) dx = 2, then find
In the following, we give some important properties of definite integrals. J. : 3f(z) — % dr .

0
(1) f) f(z) dz = — [;" f(z) d

(2) If f(a) exists, f; FUZ) dm =0 e

b
(3) fa cdz = c(b-a) An application of the definite integrals:
Theorem: If f is integrable and f(z) > 0 Vx € [a,b],

(4) If f is integrable on [a,b] and ¢ € R, then the area A of the region under the graph of f from a to b is

/:cf<x> dw=c/abf(:v) dr A- [t do

(5) [V[f(x) £ g(x)] do = [} f(z) dz £ [} g(x) da y

(6) If ¢ € [a,b] and f is integrable on [a, c] and [c, b], then f is integrable on [a, b

and
/abf(x) dx—/acf(x) dx+/cbf(x) dz

(7) If f is integrable on [a,b] and f(z) > 0, x € [a, ], then fab f(z) >0.

(8) If f and g are integrable on [a,b] and f(x) > g(z) for every x € [a, b], then

b b
/ flx) > / g(x) Example: Sketch the region bounded by y =2x — 1 and x > 0, y > 0.
a a Then, find the area.

Example: Evaluate the following integrals

(1) Jy'3 de Y
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(2) The number z that satisfies the conclusion of the Mean Value

Mean Value Theorem for Definite Integrals: Theorem for f(z) — 2% + 1 on [—2, 1] is:

I b) 2 -1 d
Definition: Let f be continuous on [a,b], then the average value f,, of f on (a) V2 (b) (c) ()0
[a, b] is
1 225
Sav = b—a/a F ) A ettt et bt e e e e eabe e e abe e
Theorem: Tf f is continuous on [a,b], there is exists a number 2 € (@, B) such 7
Chat
b ettt
[ @ do= - a2
“ (3) The number z that satisfies the conclusion of the Mean Value
Theorem for f(z) =z on [o, f] is:
Exercise: (@a  ®B)B+1 (@ (D)8
(1) If f(x) = V& + 2, then
(i) Find the average value Of f On [_27 0}. ..............................................................................................................
(ii) Find a num‘ber Z that Satisﬁes the Mean Value theorem_ ..............................................................................................................

(4) The average value of f(x) = 1]
(a) O (b) 1 (©) 3 d) 2

8
I
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4.6 Fundamental Theorem of Calculus

Theorem: (Fundamental Theorem of Calculus )
Suppose f is continuous on [a, b].

If F(z) = [T f(t) dt for every z € [a,b], then F(z) is
an anti- derlvatlve of f on [a,b].

is an anti-derivative of f on [a, b], then

Aﬂmm:

If F(x)

F(b) — F(a)

Theorem: If g and h are differentiable and f is continuous, then

d 9@

e f(t) dt = f(g(x))g (x) = f(h(x))h (z)

h(x)

Corollary: Let f be continuous on [a,b]. If F(x ) dt where

¢ € [a, b], then

= [, f(®)

Fw=%vﬁwm:ﬂm

Exercises:

(1) Find & fo Vit 41 dt

) If 4 fo Vt) dt = x for x > 0, then f(z) is equal to

(4) If F(z) = [ f'(t) dt, then F'(z) is equal to

(a) 2f(22) = f(1) (b) 2f(2) (c) 2f' (2)
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Until this stage of this course, we can not evaluate some integrals such as [ % dx
and [ V2?2 + 3 dz. In this section, we are going to study two techniques of the

numerical integration: Trapezoidal rule and Simpson’s rule. These techniques
are used to approximate definite integrals.

Trapezoidal Rule:

We use Trapezoidal rule to approximate definite integrals of form ff f(zx) dx.

Method:

(1) We want to divide the interval [a, b] into sub-intervals, so find width of sub-
intervals:

(2) Find the partition P = {xg, 21, Za, ..., 2, } where z; = x¢ + k(Az) = z¢ +
fle=a)

n

(3) Approximate the integral:
[P f(x) do~ SO [ F(ao) + 21 (1) + 2 (x2) + 2f (23) + oo+ 2f (@n1) + f(@0)]

Example 1: By using trapezoidal rule, approximate the integral ff % dx with
n=4.

Solution:
_b=a _ 2-1 _ 1
artition: zg =1, 21 =14+ =15, 20 =14+2(3)=15,23=1+3(3) =13
2) Partiti 1 1+1=13 1+2(3) =13 1+3(3) =13
and x4 =1+ 4(3) =2

The partition is P = {1,1.25,1.5,1.75, 2}.

CHAPTER: 4

4.7 Numerical Integration

B oW~ oS

Sum = >, mf(xy,)

dr ~

I [ ]

Error estimation:
Theorem: Suppose f is continuous on [a,b] and M is the maximum value

8=
00| +—=

for f on [a,b]. If Ep is the error in calculating ff f(x) dx under trapezoidal
rule, then
M(b—a)?

12n?2
Example: Estimate the error in the previous example.
f@)=t=f@=m3=>f@=3=>f"@=3.
Since f" () is a decreasing function on the interval [1,2], then f~ () is
maximized at 2 = 1. This means M = f" (1)| = 2 and

|ET| <

2217 2 1
FE _— = — = —
Brl < A5y ~ 102 ~ %6

Example 2: For the following integral f02 %x?’ + 1 dx
(i) approximate the integral by using trapezoidal rule with n = 4.
(ii) estimate the error.

Solution:
(i) Homework

(i) (@) = goa® + 1= ['(@) = fha? = ['(@) = o= [@) = 5 .
Since f (x) is an increasing function on the interval [0, 2], then f (z) is

©)2) _ 3 g

maximized at = 2. This means M = |f (2)| =

3(2-0)3 3 1
|Er| < 5(12)(42) = 30)(16) ~ Tog = 0-0063
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Simpson’s Rule:

We can use Simpson’s rule to approximate definite integrals of form

f; f(x) d.
Method:

(1) We want to divide the interval [a,b] into sub-intervals, so find width of
sub-intervals: Az = b*Ta

(2) Find the partition P = {xg, 21, x2, ..., ,, } where

xp = xo + k(Az) = z¢ + =)

n

(3) Approximate the integral:
f; f(x) do ~
U [ (o) + Af (@) + 2f (22) + 2 (23) + . + 4 (1) + f ()]

Example: By using Simpson’s rule, approximate the integral ff’ %-H dx with

n=4.

Solution:

__b—a _ 3—-1 __ 2
(1) Az =208 == =7

(2) Partition: xg =1,
r1=1+4=13,

:52=1+2(%):27
x3:1+3(?):2% and
$4:1+4(§):3

The partition is P = {1,1.5,2,2.5,3}.

Ty f(@n) mf(xn)

W= oS3
H%M.&»—ts

Sum = >, mf(x,)

%
D=

3
Ji de

4.7 Numerical Integration

Error estimation:

Theorem: Suppose f*) is continuous on [a,b] and M is the maximum

value for f®* on [a,b]. If E, is the error in calculating fj f(z) dx under
Simpson’s rule, then
M(b—a)®

FE| <
|Bs| 180n4

Example: Estimate the error in the previous example.
f@)=sh=>f@=grp=f @ =gap =1

= f(4)($) = (1141)5 = f(s)(x) = (;J’l,?g)ﬁ .

Since f(®)(x) is a decreasing function on the interval [1,3], then f*)(z) is
maximized at 2 = 1. This means M = |f®*)(1)| = 0.75 and

(#) = oy

(0.75)(3 — 1)3

Bl < (180)(44)

= 0.00013

Exercise 1: By using trapezoidal rule, approximate the following integrals
and then estimate the error

(1) [y sin @ dz with n = 4.
(2) ff’2 e~ dr with n = 4.
3) J) & do with n = 4.

Exercise 2: By using Simpson’s rule, approximate the following integrals
and then estimate the error

(1) fy VI+2® dz with n = 4.
(2) fol ﬁ dx with n = 4.

(3) fog cos z dx with n = 4.
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CHAPTER: 6

6.2 Natural Logarithm Function

We have seen that [ 2" dz = ”;::rll + ¢ where n % —1.

This formula can not be used when n = —1 where then the denominator becomes
zero. This means we do not know the value of the integral [ % dz. Alternatively,
we are looking for a function F(z) such that F'(z) = 1

Definition: The natural logarithm function is defined as follows:

In:(0,00) = R, In(z) = [+ dt

Note that the function f(t) = % is continuous on any interval that does not
contain 0.

Remark:
1) Domain of the function In(z) is (0, +00).

4
b

y=in(x)

/

2) Range of the function In(x) is R.

3) Values of In(x):

(i) In(z) >0ifx > 1

(i) In(z) =0ifx =1

(iii) In(z) < 0if 0 < = < 1

(iv) In(e) = 1 where e ~ 2.718

(4) The function In(x) is differentiable and continuous on the domain (0, c0).
Also,

d d [*1 1
—(1 = — —dt=—
dx(n(x)) dx/l t x

(5) In(x) is increasing function and it is concave on the domain (0, 00).

(6) lim, g+ In(z) = —oo and lim, o In(z) = +oo .

Theorem: For every a,b > 0 and n € Q[7, then

(1) In(ab) = In(a) + In(b)
(2) In(%) = In(a) — In(b)
(3) In(a™) = nln(a)

n
n

Theorem: If u = g(x) is differentiable and u # 0 for every x in an interval

I, then

dx

Exercise 1: Find f' ()

(3) If f(z) = In(In(z)), then f (e) is
a) e (b) —e
(c) ¢ (d) -2

%@ is a set of rational numbers.

()= 5g,

for every z € I.
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The natural exponential function (exp or e) is the inverse function of the natural

logarithm function. Therefore,

exp: R — (0,00)

CHAPTER: 6

y p
r “’4‘
< y=inex)
y=exp(x) o~ ¥
/ ‘4‘54‘-
.“"

Theorem: For any z € R, there exists y € RT such that

x=In(y) &y = exp(x)

Remark:

1) From the above discussion, the domain of exp is R and the range is (0, +00).

2) limg s 400 exp(x) = o0 and lim,, o, exp(xz) =0

3) In(e®) = xIn(e) = 2(1) = « for z € R.

4) @) = g for z € R,

Theorem: For every a,b > 0 and n € Q[f, then

(3) (e = e

%@ is a set of rational numbers.

6.3 Natural Exponential Function
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Remember:
Alm@z)=L= [ldr=In|z|+c

and

Lp(u)y =1 4 = Ly ge=1n|u|+c

u dx
Also,
d r _ _x T _ T
Lt =e" = [e"dr=e"4c
and

d _ u du w _u
Let=e" Gt = [e'u dr=e"+c

Exercise: Evaluate the following integrals:

CHAPTER: 6

Page:

6.4 Integration Using Natural Logarithm and Exponential Functions

12
2) x3+?j;cl+1 dx

(3) f sin x—cos x dx

sin xz+4cos x
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(1) General Exponential Function Theorem: For every a,b > 0 and =,y € R, then

In the previous lecture, we defined the natural exponential function (e®). In this (1) a®b¥ = a*tv (3) (a®)¥ = a™¥
lecture, we generalize that function for any base other than e. (2) Z—z =a*Y (4) (ab)® = a™b¥

Definition: For any z € R, a” = €” In(a)

The definition is derived from the natural logarithm function. We know from the Differentiation and Integration of f(z) = a” :
properties that
In(a®) = xIn(a) (1) If w = f(x) is differentiable, then
By taking the exp for both sides, d
In(a®™) zIn(a) z zIn(a) %(am) =a’ ln(a)
e =e =a" =e"
d /

The function f(z) = a® is an exponential function with base a where z is called %(au) =a" In(a) u
exponent.

(2) Integration of the general exponential function:
Remark:

xr 1 xr

1) The domain of f(z) = a” is R the range is (0, +00). /a dz = In(a) a” +c
2) For values of the base a, we have, Wy, de — 1 u
()If @ > 1, In(a) > 0, then x1n(a) increases as x increases. Hence, f(x) = a* is au dr= In(a) @ Te

increasing function.

Exercise 1: Find f (z)
(ii) If 0 < @ < 1, In(a) < 0, then zln(a) decreases as = increases. Hence,
f(z) = a” is decreasing function. (1) f(zx) =2vesin @

(iii) If a = 1, In(a) = 0, then f(z) =1 (constant fUNCEION). e ettt ettt et e ettt et e et teennee e ennes
y

A e i (2) f(z) = cos(3")

3) The function f(z) = L can be written as f(z) = a™".
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Remember:

If w = f(x) is differentiable, then

d

T a®+c

(a®) = a® In(a) = /az dx = lnza)
d

% a +c

(") =a" In(a) u = /a“u/ dx = lnza)

Exercise 1: If f(z) = 4%%n®) find f’

Exercise 3: Evaluate the following integrals:

(1) [ 5% dx

CHAPTER: 6 Page:

6.5 General Exponential and Logarithmic Functions
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6.5 General Exponential and Logarithmic Functions

(2) General logarithmic Function
The inverse function of y = a” is the general logarithm function = log, y. Since Let u = f(z) be differentiable, then
a® : R — (0,00), then ’

log, :
y=a* <z =1log,y

(0,00) > R

The function log, is called the logarithm function with the base a.

Remarks:

1) The natural logarithm function In = log,.

2) Usually, the logarithm function log;, = log.

Inz

3) log, z = £ = log,a = 1.

Ina

Inz

Let y=log,z = 2x=a = Inr=mhae’=hr=ylha=y=72

Ina”

Differentiation and integration of the general logarithmic function:

d 1 1 1
—logyr = — — = =log,z +c¢
dx Ina x rlna

d 11 u
—loggu = — —u = =log,u+c
dx Ina u ulna

Exercise 1: Find y,

1) y = log, Va2 +sin’z

4)The graph of log, x depends on Ina meaning that if a > 1 or 0 < a < 1.

y

y =log,(x),a<1

y

X
y =log,(x).a>1

Theorem: For every z,y € R* and for every n € R,
(1) log, (xy) = log,(x) + log, (y)
(2) log, () = log,(x) —log,(y)
(3) log, (z") = nlog,(x)

Exercise 1: If log,(;%5) = 1, then  is equal to:

Exercise 2: Evaluate the following integrals
1) [ 1= dx

x logx
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In this lecture, we are going to define the inverse trigonometric functions.

Differentiation of inverse trigonometric functions :

.1,
(1) sin™ " Let u = f(x) be differentiable, then
. .1
r=sin ysy=sn'z ;
1 y y y Jyds
—1<z<land -2 <y<Z 2 y =sin"'x 1 7 1
== 2=Y>73 sin~"u \/11_711 fﬁdm sin~'(z) + ¢
E 1= p cos~tu Nl i \/% dr | cos7i(x) +c
x tan=!u ﬁu/ [ 5 da tan=1(x) + ¢
sec lu u\/iTlu [ == dz | sec™!(z) +¢
2) cos™L:
1

T =0COS Yy y=2Cos T
Exercise 1: Choose the correct answer:
—1<z<land0<y<m

1) The derivative of sec™!(e®) is equal to

X (a) Ez\/imi,l (b) ei—l (c) ezll_l (d) \/ﬁ
3) tan_l: ..............................................................................................................
r=tan y < y=tan"! T

L G 2 U TN
reRand -5 <y< % T/ ..............................................................................................................
—/l : 2) The value of the integral [ \/% dzx is equal to
2 (a) sin~!(cos ) + ¢ (b) cos™H(£%2) + ¢

(c) —cos (%) +¢ (d) sin™'(s22) 4 ¢

4) sec™1:

x:secy@y:secflx = N

xs_lorleand \ ..............................................................................................................
0§y<gorﬂ.§y<37ﬂ' ..............................................................................................................
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Exercise 2: Evaluate the following integrals:

1)]%(11’

CHAPTER: 6

Day: 6.7 Inverse Trigonometric Functions

1
0) | Frrs do
7) f 6211_1 de'
8) f\/% dx
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In this section, we study hyperbolic functions that depend on functions e* and Hyperbolic Cosecant:
e .
1 2
. . cschxy = — = Vo #£0
(1) Hyperbolic Functions : sinhz e®* —e™®
Hyperbolic Sine:
sinhz = l,%ﬁ eR
2 Remarks:
v i

1) For z € R, cosh® z —sinh®z = 1

2) 1 — tanh® z = sec h’x

3) coth?z — 1 = csc h?x

Differentiation Hyperbolic Functions:

Hyperbolic Cosine:

y y y y

sinh u coshu o coth u —csch?u

cosh u sinhu v sec hu —sec hutanhu v’
tanh u sec h?u u' csc hu —cschucothu v

Exercise 1: Choose the correct answer:
¥ =coshx 1) The derivative of the function f(x) = tan=!(sinh ) is equal to
(a) sec hx (b) csc ha (c) tanh z (d) —=z
Hyperbolic TAngent:

sinh x 0 BT T
tanhz = = Ve € R
coshr e*+4e =

2) The value of the integral f_ll sinh(z) is equal to

Hyperbolic Cotangent: (a) 0 (b) 2e (c) 271 (d) e
g - SR et e
SN & 8% — 8 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aeaeas
Hyperbolic Secant: Exercise 2: If f(z) = cosh(M) find fl(x)
soc ha — L 2 Vo € R

cosh z BT - T T et eeeeteeeeeeieeeeeteeeetteeeeeteeetaiaeeett ettt ettt aattaataaaaeannn
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Lecture Date: / / Day: 6.8 Hyperbolic and Inverse Hyperbolic Functions
. . 2) J 253152 5 dx
(2) Inverse Hyperbolic Functions :
1) e
Sinh_l : R%R ..............................................................................................................
sinhy =r&sy= Sil’lh_l 2O
2) e
R
coshy=zr e y= Fere) SRR
3) e
L e S
tanhy =2 < y =tanh ' )
4) 3) S Vi—ez= dx
sech™ (0, 1] 5 [0,00) oot
Sechy =r&sy= Sech_lx ..............................................................................................................
Differentiation of Inverse Hyperbolic Functions : e
Y y/ ) y/ ..............................................................................................................
sinb ™ ol tnh ™t s ful <1 e
cosh™'u uéilu', u>1 | sech~tu - ;iqﬂul, 0 U < L |
Exercise 3: Evaluate the following integrals o1
4) fﬂc\/25—x2 dz



M-106 Calculus Integration

Lecture

Exercise 1: Find the following limits
1) im, 52 —5

z2-25

2) llmw_)g) o

r—5
z2—-25

Vr—1-2

x?—25

sin
T

Indeterminate Forms:

CHAPTER: 6

6.9 Indeterminate Forms & L’Hopital Rule

3) llmxﬁo iz

Form

Indeterminate Forms

Quotient % and %2
Product

Sum & Difference

Exponential

0.00 and 0.(—0o0)
(—00) 4+ 00 and co — o0

0%, 1°°, 17°° and oo

L’Hopital Rule:

Suppose f(z) and g(x) are differentiable on an interval I and ¢ € I where f and

g may not be differentiable at c. If %

exists or equals to co or —oo, then
lim M = lim
r—cC g(x)
Exercise: Find the following limits:
Ve—1-2

22 —25

has the form § or 22, if lim, . *~

f (@)

0 o)

e T
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6.9 Indeterminate Forms & L’Hopital Rule
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Theorem: Let u = f(z) and v = g(z). If f* and ¢ are continuous, then

/udvzuv—/vdu

Explanation:

We know that

[ f(2)g (x) dxff L(f(2)g( )dxfff' Yg(x) dx

J f(@)g (x) dz = f(z)g(z) — [ [ (a

Since du = f/(x)da: and dv = ¢ (z)dz, then

/udv:uvf/vdu

Question: Why do we use the integration by parts?

We use this technique to simplify the original integral by dividing the integrand

into two parts v and dwv.

Example: Evaluate the following integrals [z cosz dx .

Solution:

Let [ = [xcosz dz and
u=x = du=dzx

dv =cosr = v =-ginx

I =zsinz — [sinz dz

= ] =xsinx +cosz .

CHAPTER: 7

7.1 Integration by Parts

Exercise: Evaluate the following integrals

1) [zsec?z dx
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3) [{ @®nx dx 5) [ze” dx
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In this section, we evaluate integrals of forms: Exercise: Evaluate the following integrals

1) [sin" z cos™ x dx

(1) [sin®z dx
2) [tan™ zsec™ x dx

Since n = 3 is odd, we use the substitution method. Write
3) [sinnxsinma dx, [cosnxcosmz dz, [sinnxcosma dx

sin®x = sin?z sina

Before we start considering the previous forms, we present some important for-
mulas that are used in this section.

3

sin®z = (1 — cos®z) sinz

5 Let w = cosz = du = —sinz.
2 : _ 2 e o .
cos“z +sin“z =1 1+tan®z =sec*x By substituting, the integral becomes
cot?z +1 =csc?z 2cos?x — 1 = cos 2w 3
u
. _ . 2 _
sin? @ = 1=cos2z cos? z — sin? z = cos 2z —/(1—u)du——(u—§)+c
cos? g = 1hegs2r 1 —2sin?z = cos 2z .
but u = cos x, this implies
sinma cosnz = 3 [sin(m — n)z + sin(m + n)z|
3
. . T i cos® x
sinmasinnz = 3 [ cos(m — n)x — cos(m + n)z] /s1n3 zdr = —cosz + +e
cosma cosnz = %[ cos(m — n)z + cos(m + n)z|

(2) [sin*z dx

BT | L | e

/Sinnl‘ COSm.Z' dx ..............................................................................................................

Method:

@ If n is odd, we write sin™ x cos” z = sin™ 'z cos™ zsin .

Then, we use cos? z + sin? 2z = 1 and the substitution u = cos z.

@ If m is odd, we write sin” z cos™ x = sin” x cos™ ! z cos .

Then, we use cos? z + sin? z = 1 and the substitution u = sin .

120022 and cos?z =

@) If n and m are even, we use the formula sin® z = W
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Lecture Date: / / Day: 7.2 Trigonometric Integrals
(3) [sin®z cos*x da (5) f()% sin® x cos®z dx
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Lecture Date: / / Day: 7.2 Trigonometric Integrals
Remember: Exercise: Evaluate the following integrals
3

cos?z +sin?z =1 1+tan?z =sec’z (1) [tan’z dz

cot?x +1 = csc?x 2cos?x — 1 = cos2x

sin’ g = 1=egr2e oS —SIN® T = COS2T | e

cost:% 1 2 SIN2 = COS 2 | ettt ettt e e e e e abb s
Remark:
(1) [tane do= [ S5 do— —Infcosa|+c.

(2) [cotz do = [<22L dx =In|sinz| +c.

sinx

. _ sec z(sec z+tan x) _ sec? ztsecztanz __ .
(3) f secw dx = f sec x+tan x de = f sec x+tan x =1In | secz + tanx‘ +ec

Form e e e e e

/tan" z sec” x dx

Method:

@D If n =0 and

(i) m is odd, then write sec™ z = sec
and let u = sec™ 2 2

=2 1 s0c? 2. Use the integration by parts I

x and dv = sec” x.

(ii) m is even, then write sec™ x = sec™ 2 x sec? z dz and use sec? v = 1+tan’x

with the substitution v = tan x. (3) f sect

@ If m = 0, write tan” x = tan” 2z tan? z and use tan? x = sec® z — 1 with the
substitution u© = tan z.

2

@) If n is even and m is odd, use tan?z = sec?x — 1 to change the integral to

T
becomes [ sec” z dz, then use (.

@ n is odd and m is even OR if n and m are even, then write tan™ z = sec™ x =

tan™ zsec™ 2z sec?z dx and use sec?z = 1 + tan®z with the substitution
u = tanx.
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(4) [sec®z dx (6) [tan®z secSz da
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Remember: (3) [sinbx cos3z dx
sinmacosne = $[sin(m — )z +sin(m 4+ n)Z] | e,
sinmxsinnxe = % [cos(m —n)z — cos(m + n)x] ..............................................................................................................
COS ma: COS nx — % [ Cos(m _ n)x + Cos(m + n)x} oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Exercise: Evaluate the following integrals

(1) [sinbz sin3z dz
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CHAPTER: 7

Day: 7.3 Trigonometric Substitution

We are going to study integrals contains of va2 — 22, Va2 + 22 and V2 — a2.

Va2 — 22 =acosf if x = asinf.

If + = asinf, then Va2 —22 = Va2 —a2sin?0 = y/a2(1 —sin?0) =

va?cos? = acosf

If + = atanf, then Va2 +22 = Va2 +a2tan?0 =

Va?sec?0 = asect.

Exercise: Evaluate the following integrals

(1) [2*V4 —2? dz

Va2 —a? =atanf if x = asec.

If + = asech, then vz2 —a?2 = +aZsec?f—a? =

Va2tan® 6 = atané.

a?(1+tan?0) =

CL2(5602 09— 1) P P PP PP PP PPPEPPEPIR:
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Let assume that the rational function takes the form: ¢(z) = %. So, f(x) is

the numerator and g(z) is the denominator. We will take 4 cases for integrating
the rational functions.

Example: Evaluate the following integral: [ %ﬁ’dz

Before we start, you should know about how to factor an expression g(z) into
irreducible factors.

1) @B (amb)ath)
(22 — 64) = (x — 8)(x + 8)

(2) ar® £bx+c
Letainbxic:O,thenx:%@.

—344/9-4(1)(2)
2(1)

22 +324+2=22+32x+2=0, then 2 =
sz=-lorz=-2=(z+1)(z—-2)=0.

(3) a®+b® = (a+b)(a® Fab+b?)
2% 427 = (2 + 3)(22 F 3¢ + 9)

Theorem: If ¢(z) = gé;; is a rational function such that degree of f(z) is less

than the degree of g(x), then there exists partial fractions F, Fy, ..., F,, where

q(x) = Fi(z) + fa(2) + .. + Fu(2). Bach of Fj(x) takes the form oy m € N oo
Axz+B

or m b2—4O/C<O. ..............................................................................................................

Case 1: If degree of f(x) is greater than or equal to degree of (). e,

For this case, we have three Steps:

Step 1: Long division: gg; = h(z)+ ;Ef; where h(z) is and r(z) is the TemainIng. e,

Step 2: Factor g(z) into irreducible factors. e,

Step 3: Write the fraction % as partial factors.
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Case 2: If degree of f(x) is less than degree of g(z). Exercise: Evaluate the following integrals:

We ignore step 1 in Case 1, so we have two steps: . ' 42021 g
z2—1

Step 1: Factor g(z) into irreducible factors.

x 74m+2
Step 2: Write the fraction L; as partial factors. o S—dz? 55 0T
Example: Evaluate the following integral: [ de

4z ° f 2+3x+2dx

e e e e e e e S
e e e e e e * [
e e e e e e o e
.............................................................................................................. . f (L.3+7"d:1:
.............................................................................................................. x71
.............................................................................................................. ° f 6221_4(11:

.............................................................................................................. 1 945 2431
® fO 3 —4z dx
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Case 3: Repeated factors of the denominator g(z). Case 4: Quadratic factors of the denominator g(x).

2
22 —25x—33 dr

823413
T2z 5) e

(@7+2)?

Example: Evaluate the following integral: [ Example: Evaluate the following integral: [
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Exercise: Evaluate the following integrals:

L4 3
2z° —42—8 z(z—1)
b f 3 — 2x2+xd’r
12
.............................................................................................................. ° fg;47m37212dx

441
.............................................................................................................. o [ oty de

x +T +x+2
.............................................................................................................. o [ty

42 —13x+6
.............................................................................................................. o [ destes gy

21 —1
.............................................................................................................. o | Eihyde

cosx
.............................................................................................................. ° f S ridsmnas dx

.............................................................................................................. ofﬁdx
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Lecture Date: / / Day: 7.5 (1) Integrals Involving the Quadratic Expressions

Sometimes quadratic expression az? + bx + c is irreducible. Because of that we
use new technique that is completing square method: a? & 2ab + b* = (a £ b)2.

3 2% —da+46
@ Jf; Py

EX 1 The quadratic eXpreSSiOn IQ—I—12 iS reducible .TQ —1’—12 — (1‘+3) (CC—4) ..............................................................................................................
Ex 2. The quadratic expression 12 Bz 13 ds Qrreducible.

By completing square i.e., we need to rewrite the previous expression as
Cl2 iQab+b2 — (a:l:b)Q ..............................................................................................................
Put 2b:6:>b:3:>b2:9 SO, WeaddandsubtractQ ..............................................................................................................
= ($2 _6.’15-’—9) 1320,
= (.I' _ 3)2 + A e

Ex 3. The quadratic expression 22 48z 25 s irreducible.

By completing square, 2b = 8 = b = 4 = b% = 16. So, we add and subtract 16,
then the previous expression becomes
(22 + 8z +16) + 25 — 16 = (z + 4)2 + 9.

1
@ f VT+6x—22 dx.
Now, we use the idea to solve the following integrals.

Exercise: Evaluate the following integrals

@ f 12_5I+2dx. ..............................................................................................................
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We use the substitution u = tan(
that contain on sin(z) and cos(z) in their denominators.

Let u = tan(5) = 8602(%2) =u?+ 1.
+1
=d.

Also, this implies du =
Now, we write sin(z) and cos(x) using the previous substitution.

sin(x) = sin2(5

227 cos(%)cos (%)
= 2tan(§)cos*(§) = Q;chz((?) = 1

This means if u = tan(3), then

2 .
du = “Sdx and sin(z) = F%.

Hint: use the formula sin(u)sin(v) = $[cos(u — v) — cos(u + v)], put u = v = z.

Exercise: Evaluate the following integrals

@ f SSin(m)}HLcos(w) dx.

CHAPTER: 7

) to reduce the integration of rational functions

Page:

7.5 (2) Integrals of Rational Functions of sin(z) and cos(x)

@ [ #H(I)da? (Homework)
® [ #s(r)dx (Homework)
@ [ ﬁs(w)dﬂﬁ (Homework)

® [ 75+36108(I) dz (Homework)
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We call fab f(z) dx a proper integral if

1) the interval [a,b] is finite and

2) f(x) is continuous on [a, b].

This means if condition 1 or 2 is not satisfied, the integral is improper.

We going to study two cases of improper integrals:

Case 1: Interval of the integral is infinite

[ f(x) de, [* f(z)dz, [ f(z)ds.

Definition: (1) if f is continuous on [a, +00), then

/aOO f(z) dz = lim /at f(z) dz

t—o0

(2) if f is continuous on (—oo, b], then

" @ de= m [ 1) do
/ /

oo t——o0

(3) if f is continuous on R and a € R, then

/_Zf(m)dx: lim /t“f(x) dx‘LtlEEc/atf(fU) dx

t——o0

Note: An improper integral is convergent if the limit exists as a finite number.

Exercise: Determine whether the integral converges or diverges:

foooﬁdx'

7.7 Improper Integrals

fjooo 1+112 dr .
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Page:
7.7 Improper Integrals
Case 2: Integrals with infinite discontinuities.

[
Definition: (1) if f is continuous on [a,b) and has an infinite discontinuity at
b, then

b ¢
/a f(x)dx :t£1£7[1 f(z) dx

(2) if f is continuous on (a,b] and has an infinite discontinuity at a, then

b a
/ f(z)dz = lim f(x) dz

t—at t

The integral is convergent if the limit exists as a finite number.

Exercise: Determine whether the integral converges or diverges:

figx%dx'

fﬁom%dﬂc.

(z—8)3

fooo sinz dz .
.............................................................................................................. f—ll :)3%4 dr .
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Remember: If f(z) > 0 and continuous on [a,b], then the area of the region Remark: (1) If we have an equation of the form x = f(y) instead of
under the graph See Figure 1 is given by y = f(x) where f is continuous on [c,d]. We let y be the variable of

the integral. Then, the area is

b
A:/a f(x)de A_/Cdf(y) dy

(Figure 1)

y y=f(x) y

.
"‘\_\:\\
¥
2

X
a
X
(2) If f(y) and ¢g(y) are two continuous functions such that f(y) > g(y)
Theorem: If f(x) and g(x) continuous and f(z) > g(z) for every x € [a,b], for every y € [e, d], then the area A of the region bounded by the graphs
then the area A of the region bounded by the graphs of f and g is of f and g is

b
A= / (f(z) — g(z))dzx

(Figure 2)

t y=f(x
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Exercise 1: Express the area of the shaded region as a definite integral then
find the area.

[1] [

3x-4y=-11 525 PP PP O OO OO P PPPPPRRRPPPPPPIRE

rTf;; / y=flx) PR | ettt
i

Exercise 2: Sketch the region by the graphs of y = 2® and y = z, then
find its area.

Exercise 3: Sketch the region by the graphs of t =3 — 3?2 and 2 =y + 1,

then find its area.

\\\\‘ Jox46 e e e e
x-y=2 | s Ea e e RA s AR AR AR
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=-X
T yA . . T
g
2 4 0 1 2 3 s
y=x2-1
v A
x
i £ i 2
3,r=(x-|-1)2
‘ vk ' ‘
X
R £ i 2

25

20+
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Let R, be a region of f(z) where f is continuous and f > 0. Let R, be bounded
by the graph and x-axis and x = a,z = b. Revolution of the region about a line
(x-axis or y-axis) generates a solid called solid of revolution.

Example 1:
Consider the graph of f(x) and the region R, in Figure 1. Revolution of R,
about x-axis generates a solid of revolution given in Figure 2.

CHAPTER: 5

5.2 Volume of Revolution: (1) Disk Method

Volume of the Solid of Revolution:

(1) Disk Method

Let f be continuous on [a,b] and let R, be a region bounded by the
graphs, x-axis and the points * = a, © = b. Let S be a solid generated by
revolving R, about x-axis.

Let P be a partition of [a,b] and wy, € [xg_1,x]. For each [zy_1,xk], we
form a rectangular, its high is f(wy) and its width is Ax.

(Figure 1) (Figure 2)
y d Revolution of the rectangular about x-axis generates a circular disk as
y=1(9) y=09 shown in Figure 7. Its radius and high are
R
x £\
= 5 = | M T r= f(wg)
h = Axk
Example 2: (Figure 7) (Figure 8)
Let f(x) be a constant function, for example f(x) = 3 as in Figure 3. The
region R, is a rectangular and revolution of R, about x-axis generates a circular Y
cylinder given in Figure 4.
(Figure 3) (Figure 4) fow:) @
fOre) fowe)
Y y k
A
y=f(x) y=f(x) roy J G 4
| L M} i
Example 3: From this, the volume of the circular disk is
Consider the graph of f(y) and the region R, in Figure 5. Revolution of R, )
about x-axis generates a solid of revolution given in Figure 6. Vi = m(f(wg))"Azy,
(Figure 5) (Figure 6)
Y The sum of volumes of circular disks approximately gives the volume of the

y=d

y=c

y
y x=g(y)

=

=4

>

solid of revolution given in Figure 8:

n

n b
V=S AV = S a(f(wy)? Ay = / A[f@) do
k=1 a

k=1
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From the previous discussion,
(1) The volume V of the solid of the revolution of the region bounded by the
graph of y = f(z) and = a,z = b about x-axis is

Exercise: Sketch the region R bounded by the graphs of the equations
y=a3-1,2=0,y="1.
Then, find the volume of the solid generated if R is revolved about y-axis.

b
V:/ W[f(x)F 17 /72N

(2) Let f be continuous on [c,d]. The volume V' of the solid of the revolution of ettt
the region bounded by the graph of = f(y) and y = ¢,y = d about y-axXIS IS oo e

e
'- / ") dy e e e e e e

Example: Sketch the region R bounded by the graphs of the equations y = \/57 ..............................................................................................................
T =4,y =0.
Then, find the volume of the solid generated if R is revolved about X-axis. — cresrssm

SOlutiOn: ..............................................................................................................

The VOIUINIE: s

V= f04 TIVEZ AT ettt ettt enes

:7rf04:17 dl’:ﬂ[gi]é I T, e
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‘Washer Method
(2) If R, is revolved about y-axis, we have a solid S with a hole through

The washer method is generalization of the disk method for a region between that solid. The volume of S is the difference between the volumes of two
two functions f(x) and g(x) as shown in the following Figure 1. Let R, be a solids generated by f and g:
region bounded by the graphs of f(z) and g(x) such that f(xz) > g(x) and by
xr=a, =0 y
o L= 0,
V=) : /;

(2]

F@(X)] "

V= 7T/ (Lf @) = lo)]?) dy

Note: Revolution of a rectangular generates a solid likes a washer where there
are two radius: outer radius and inner radius.
Example: Evaluate the volume of the solid generated by revolution

Volume of the washer = 7 [r; — 7o) (thickness) of the bounded region by graphs of the following two functions y = 22
and y = 2x about x-axis.

where r; is the outer radius and ry is the inner radius. For a partition P =

{z1,29,....2n} and wy € [xg_1, zg], the volume of the washer is Solution:
V= (£ (wn))? = o)) A L y
Since the whole solid S is formed by a set of washers, then the volume of S can y=2x/, ;x1
be obtained by summing the volume of washers. i
ral }JL i }2x
X X

Summary:
(1) If R, is revolved about x-axis, we have a solid S with a hole through that solid.
The volume of S is the difference between the volumes of two solids generated
by f and g:

The volume of the solid S is , Sy
V= 7Tf02[2x]2 — [2%)? do = 7Tf02[4x2] —[pY de=7[4 - 2] =8r

b
V=w/(U@W—w@W)M
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Exercise 1: Evaluate the volume of the solid generated by revolution of the Exercise 2: Evaluate the volume of the solid generated by revolving
bounded region by graphs of the following two functions z = /y and 2 = § the bounded region by graphs y = sin and y = cos z, x =0, z = }

about y-axis. about x-axis.
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(Figure 1)

¥

As shown in Figure 1, let

r1 be outer radius of the shell

r9 be inner radius of the shell

h be high of the shell

Ar = r9 — r1 be thickness of the shell
r= % be average radius of the shell

The volume of the cylindrical shell
V =nrih —nrh

=7(r2 —ri)h

=7(rg +r1)(ro —r1)h

= QW(%)h(Tg — 7’1)

= 2nrhAr

Now, consider the graph given in Figure 2. Revolution of the region R, about

y-axis generates a solid given in Figure 3.

Let P be a partition of the interval [a, b] and let wy, be the mid point of [zf_1, z]

(see Figure 2).

Revolution of the rectangular given in Figure 2 about y-axis generates a cylin-

drical shell where
average radius = wy
high = f(wy)
thickness = Axy,

CHAPTER: 5 Page:
5.3 Volume of Revolution: (3) Method of Cylindrical Shells

(Figure 2) (Figure 3)
Y] ¥
T
= |
y=Hx)
a / J\ b X X
R3] X, C D
W,

Hence, the volume of the cylindrical shell

Vk = 2’/kaf(wk)AIk

To evaluate the volume of the whole solid, we sum the volume of
all cylindrical shells. This means

V=> Vi=2rY wf(wy)Azy,
k=1

k=1 —

From Riemann Sum Y ;_, wy f(wi)Azy = f; xf(x) dz, we have

b
V=27r/ xf(x) dx

Similarly, if the revolution of the region about x-axis, the volume of the
solid of revolution is

d
V= 2%/ yf(y) dy
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Example: Sketch the region R bounded by the graphs of the equations y = Exercise: Find the volume of the region bounded by y = sin z, = 0,
2¢ — 1%, x =0, y =0, z = 7w and revolved about y-axis.

Then, by method of cylindrical shells, find the volume of the solid generated if
R is revolved about y-axis.

(Figure 4)

y 7 PR
T

Ax |

O PO

Since the revolution of the region R, about y-axis, thell et e et e e e e e e
V =21 f02 gj(2x — (52) 1% /28
=9 f02 D B A e
e
=2r[2% — T}o ..............................................................................................................
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(1) Arc Length:

Definition:

(1) Let y = f(z) is a smooth function (it has derivatives of all orders everywhere
in its domain) on [a,b]. The length of the arc of f from z = a to x = b is

b
L) = [ 1+ @] de| s @) =
y b
y=f(x)
a b x

(2) Let z = g(y) is a smooth function on [¢,d]. The length of the arc of g from

y=ctoy=dis

L@:lﬂh+wmf@

y L 3
d
c e

, d
,9 (z) = é
x=g(y)

X

Exercise 1: Choose the correct answer

(1) The arc length of the graph of the curve y = coshz, 0 < x <4 is
equal to

(2) The arc length of the graph of the curve y = 4z, from A(0,0) to
B(1,4) is equal to

@ VIT (V5 () 4VTT
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(2) Surfaces of Revolution:

Let y = f(z) be a smooth function on [a, b]. Revolution of the curve about x-axis
or y-axis generates surface called Surface of Revolution.

Definition:

(1) Let y = f(x) be a smooth function on [a,b]. The surface area S.A generated
by revolving the curve of f about x-axis from x = a to x = b is

S.A= 27r/ab | f(2) |1+ [f ()] da

¥ ¥=Hx)

a b x an

NOTE: If the revolution of the curve of f is about y-axis, then

S.A= 271'/;36\/1—1— [f’(w)]2 dx

(2) Let = g(y) be a smooth function on [¢,d]. The surface area S.A generated
by revolving the curve of g about y-axis from y =c to y =d is

d
sa=2 [ 1) 1+ 5 @] dy

y y

d —
x=(y) i? x=g(y)
c ¢

NOTE: If the revolution of the curve of g is about x-axis, then

S.A= 27r/cdy\/1+ [g'(x)]2 dy

Exercise 2: Choose the correct answer

(1) The surface area generated by revolving the curve of the function
V4 —x2, =2 < x < 2 around x-axis is equal to

(a) 167 (b) 4 (c) 8« (d) 67

(2) The surface area resulting by revolving the graph of the equation
y=ua,0 <y <4 around y-axis is equal to

(a) 16v/27 (b) v2r (c) 16v2 (d) 8v2r
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If f is continuous, the graph of y = f(z) is called a plane curve.

Example: Let y = 22 for —2 < z < 2. The equation is continuous and its graph
given in the following figure.

Now, let x =t and y =t for —2 < t < t. then, we have the same graph.
The last equations are called parametric equations for the curve C.

Note:
(1) Parametric equations give the same graph of y = f(z)

(2)Parametric equations give the orientation of C.

(3) To find the parametric equations, we introduce a third variable t called a
parameter. Rewrite z and y as functions of ¢, then we have the parametric
equations

x = f(t) parametric equation for x

y = g(t) parametric equation for y

Exercise 1: For the following curves,

(a) find an equation in 2 and y whose graph contains the points on the curve.
(b) sketch the graph of C'.

(¢) indicate the orientation.

DDzx=t—-2,y=2t+3,0<t<5
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Here, we are going to find the slope of the tangent, the second derivative,
the length of the arc and the area of the surface of revolution.

(1) Slope of the tangent line at a point:
If a smooth curve C given by = f(t) and y = g(t), then the slope of tangent
line to C' at point P(x,y) is

o dy %,d

(2) Second derivative in a parametric form:

’ d/
;o) %
dx? dx 3—‘;

(3) Length of the arc of the curve:
The length of the curve x = f(¢), y = g(t) where a <t < b is given by

= [ @ a

(4) Area of the surface of revolution of a curve:
(i) Let the curve C is given by x = f(¢), x = g(t) where a < ¢ <b. If y > 0 on
[a, b], then the area S.A of the surface generated by revolving C' about x-axis is

b dx dy
S.A 27r/a y“(dt) +(dt) dt

(ii) If the curve C is revolved about y-axis where x = f(t) > 0 on [a, b], then
the area S.A of the surface

b
dx dy
A=2 —)2 4 ()2
S 7r/a x\/(dt) +(dt) dt

Exercise 2: Choose the correct answer

1) The slope of the tangent line at the point corresponding to t = 7 on
the curve given parametrically by the equations x = sint, y = cost;
0<t<2mis

@ -1 M1 (©0 ()1

2) The length of the curve C: x = 2cost, y = 2sint, 0 <t < 1 is equal to

@1 MVZ (2 (d)4

3) The surface area resulting by revolving the graph of the parametric
equation z = 3t, y = 3t, 0 < ¢t < 1 around the x-axis is equal to

(a) 9v2r  (b) 18V2r  (c) 24v2r  (d) 3V2r

Exercise 3: Find g—g and %, then evaluate each at the indicated value
of the parameter.

x =2cost, y =2sint at t = 7.
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1) Straight line
(1) g (©)
Y} ¥
y=ax+bh
ob /"
. (00) 2
-b
(-0) *
a x=ay?
2) Parabola
o (D)
y 4
y
y=a’
(00) 5
(0,0 x Xi= —ay2
(B) (3) Circle
Y y
Kyt =t %
> -7,0 ki r,0 '
O T\ - g i3 )\j( .
X
(O,— )
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(4) Ellipse
(A)

(5) Hyperbola
(A)

CHAPTER: 9

Date: / /
y 4 ik
.
(0,b) a b
r\ a>h
(—a,O)k-/(a,O) ;
(0,-b
y oy
(0‘[7 ?+ bfZ:l
b>a
(-a,0) (a.0) X
(0,-b)
y fi

. (.— d, O)

9.1 Parametric Equations of Plane Curves

&
a>b
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Previously, we used Cartesian coordinate to determine points (x,y) as shown
in Figure 1. We are going to study a new coordinate system called Polar

Coordinates.

The polar coordinate is a two-dimensional coordinate system. It contains a fixed
point O (Pole) and each point on a plane is determined by a distance (r) from

the pole and an angle (6) from a fixed direction as shown in Figure 2.

CHAPTER: 9

Figure 1 Figure 2
y A
(2,3) P(r.0)
T
X Pole %
Polar axis

Example 1:

Note: In the Cartesian coordinate system, each point in the plane corresponds
to a unique ordered pair (z,y) of numbers. However, this is not true in the polar
coordinate where each point has infinite number of polar coordinate pairs.

9.3 The Polar Coordinates System

Example 2: Represent the following polar coordinates
(2,%), (2,2) and (-2, %).
. 5F

(_": )

Conclusion: the polar coordinates represent the same point.
Generally, we can write

‘(7‘,9—1—27177):(7‘,9):(—7“704—(271—1-1)77) nEZ‘

(1) Relationship between Polar and Rectangular Coordinates

Let (x,y) be rectangular a coordinate and (r,6) be a polar coordinate.
Let the pole on the origin point and polar axis on x-axis, and the line
# = 5 on y-axis as shown in the following figure.

7T 4
J"’ —
2
Px.y)=(F.0)
s i
E}r sin &
) :
o] ———aA
7 cos &

From the triangle O A P

T
cost = — = x=rcosb
r

sinf =2 = y=rsind
T
From this,
22 +y? = (rcosf)? + (rsinf)? = 22 + y? = r2(cos? 0 + sin* 0)
Then, 22 + y? =r? .
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Exercise 1: Choose the correct answer

(1) If a point has (r, 6)-coordinates where (r,6) = (1, §), then its (z,y)-coordinate

(2) Slope of a tangent line
The slope of a tangent line to the graph of r = f(0) is given by

dy
dy _ @
T dz
dzx %

Note:
(1) It % = 0 such that % # 0, the curve has a horizontal tangent line.

2) If % = ( such that % 0, the curve has a vertical tangent line.
o a6 g
Exercise: Choose the correct answer

(1) The slope of the tangent line to the curve: r = cosf at § = 7 is
@3 MO0 (f (@1

(2) The slope of the tangent line to the curve: r =2 at § = 7 is
(@1  (b)-1 ()0 (d)oo
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(3) Graphs in Polar Coordinates
Test of Symmetry in Polar System:

(a) Symmetry about the polar axis (x-axis)

The graph of r = f(0) is symmetric with respect to the polar axis if substitution
of

—0 for 6
does not change the equation r = f(6).

Example 1: Consider the graph of » = 4cos#f.
Since cos(—60) = cos 6, then the graph is symmetric about the polar axis.

y
o (7,0)

(b) Symmetry about the vertical line § = 7 (y-axis)

The graph of r = f(0) is symmetric with respect to the vertical line if substitution
of
(i) m — 0 for 6 OR

(ii) —r for r and —@ for 6
does not change the equation r = f(6).

Example 2: Consider the graph of r = 4sin6.
Since sin(m—0) = sin § and also, —rsin(—0) = rsin §, then the graph is symmetric

about the vertical line 6 = 7.

CHAPTER: 9

9.3 The Polar Coordinates System: Graphs

(¢) Symmetry about the pole § = 0 (origin in xy-plane)

The graph of r = f(6) is symmetric with respect to the pole if
substitution of
(i) —r for r OR

(ii) w + 0 for 6
does not change the equation r = f(6).

Example 3: Consider the graph of 72 = a2 sin 26.
Note: (—r)? = a?sin20 = r? = a?sin 26. Also,

r? = a?sin[2(7w + 0)] = a® sin(27 + 20) = a?sin 26.
This means the graph is symmetric about the pole.

(.6 =(r.7+6)

Lines in Polar Coordinates
(i) General equation of a straight line ax + bx = ¢, its polar equation is

c
" acosf+bsind

(ii) Equation of a vertical line x = k, its polar equation is

r = ksect

HOW? r=ksec =>r=-t_ =rcos=k=uz==k.

cos 6
(iii) Equation of a horizontal line y = k, its polar equation is

r=kcsct

HOW? r =kcscl = r = k9:>rsin9:k:>y:k.

sin

(iv) Equation of a line that passes the origin point and makes an angle 6;:

0 =00

Example: Sketch the graph of the polar equation ¢ = 7.
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Circles in Polar Coordinates

(i) A circle its center at O and radius a: 7 = a

(i) A circle its center at (a,0) and radius |a|: r = 2acos @
(iii) A circle its center at (0, a) and radius |a|: r = 2asin 0

Cardioid

1=-2acos 0| 1=2a.¢0s 0
r =a(l +cosf) OR r = a(l £ sin h)

a(l+cosf) r=a(l—cosf) r=a(l+sinh) r=

a0 d

.leacons
r=a+xbcosd ORr =a=+bsinb

(1) r=a+bcosb

(i) r =a+bcosh
7 <1 Il<g<2

{/

a(l — sin 6)

CHAPTER: 9

9.3 The Polar Coordinates System: Graphs
(2) r=a+xbsind
(i) r=a+bsinfd
<1 1<3<2 7T2>2

(ii) r = a — bsin b

Roses

r =acosnf OR r = asinnf where n € N.

(i) r = acosnb
n=2

(ii) r = asinnd
n=2

% ¥ % X

n=3 n=4

n=23

¥

Note: If n is odd, there are n petals. If n is even, there are 2n petals.

@ Spiral of Archimedes
r = af where a > 0.

kY
S

Exercise: Sketch the following:
o =3

o =2cosb.
e r=0sind.

er=06—6sin.
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Theorem: (1) Let f is continuous and non-negative on [«, 8], where 0 < o <
B < 2m. The area A of the region bounded by the graphs of 7 = f(0), 6 = a, e
and 0=Fis e ——eaaaaaa s

L o e ettt e e e ettt e e e e e eeeees

B
Asg [WOF@l

(2) Let f and g are continuous and non-negative on [a, f], the area of the region
R={(r0) :a<0<B,g(0) Sr<f(O)F0s

B
Amg [TUOF = @@)1do|

Exercise 1: Find the area of the region bounded by the graph of the polar
equation
(i) r = 2cos¥b.

e 6 0 |% |5 |5 |5 |~ |[¥ |2
.............................................................................................................. smf |0 |1 || % |1 ~110
S cosf |1 |F|J5 |5 |0 |-1]0 |1
.............................................................................................................. tan 6 0 % 1 V3|l |0 —o00l 0
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Exercise 2: Find the area of the region that is inside the graphs of Exercise 3: Find the area of the region that is outside the graph of

both the equations 7 = siné , 7 = v/3 cos 6. r = 3 and inside the graph of r =2 4 2 cos 6.
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(1) Arc Length of a Curve C in Polar Coordinates:

Exercise: Find the area of the region that is inside both of graph
To find arc length of a curve C' in polar coordinates, we use

of equations r = 3 + 3cosf and r = 3 — 3 cosé.

.............................................................................................................. p dr
— 2 2Ty2
.............................................................................................................. L= [y G an

.............................................................................................................. Exercise 1: Find the length of the curve
.............................................................................................................. (1) r =1+ cos 0
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(2) Surface of revolution in Polar Coordinates:
Surface of revolution generated by revolving C' about
(A) Polar axis:

B
S:/a 27y WH%)? a0

(B) The line 6§ = 5t

§— /j orlely/ ()2 + (%)2 i

Remember:

T =rcosb

y = rsinf

Exercise 2: Find the area of the surface generated by revolving the curve C:

r = 2+ 2cosf about the polar axis.

Page:

9.4 Integrals in Polar Coordinates: Arc Length Surface of Revolution

Exercise 3: Find the area of the surface generated by revolving the

curve C: r = sin? 6 about the line 6 = 5

Exercise 4: Find the area of the surface generated by revolving the
curve C: r = 2asinf about

(i) the line polar axis.

(ii) the line 6 = 7.





