Final Exam, January 2015

NAME:

Group Number:

ID:

Question	Grade
I	
II	
III	
IV	
V	
VI	
Total	

Question	1	2	3	4	5	6	7	8	9	10	11
Answer											

I) Choose the correct answer (write it on the table above):

1) The proposition $(p \wedge q) \vee(\neg p \vee(p \wedge \neg q))$ is
(A) a tautology
(B) a contradiction
(C) None of the previous
2) The argument

$$
\begin{aligned}
& p \\
& p \rightarrow q \\
& \neg q \vee r \\
& ----- \\
& r \\
& \text { is }
\end{aligned}
$$

(A) valid
(B) invalid
3) The statement $\neg \exists x(\neg p(x) \wedge q(x))$ is logically equivalent to
(A)
$\exists x(p(x) \vee \neg q(x))$
(B)
$\forall x(p(x) \vee \neg q(x))$
(C)
$\forall x(\neg p(x) \wedge q(x))$
(D) None of the previous
4) An equivalent expression for the statement $\exists x \in \mathbb{R}$ such that $x^{2}=2$ is

(A) The square of each number is 2
(B) If x is a real number, then $x^{2}=2$
5) In the congruence relation modulo $5\left(\equiv \begin{array}{c}\text { (C) There is at least } \\ \text { one real number } \\ \text { whose square is } 2\end{array}\right.$
(D) None of the previous

5) In the congruence relation modulo $5(\equiv \bmod 5)$ on \mathbb{Z}
(A) $3 \in[2]$
(B) $7 \in[0]$
(C) $-9 \in[1]$
(D) None of the previous

6) If R is an equivalence relation and $x R y$, then
(A) $[x] \cap[y]=\emptyset$
(B) $[x]=[y]$
(C) $[x] \neq[y]$
(D) None of the previous
7) Which of the following relations is false?
$(\mathrm{A}) \emptyset \subseteq \mathbb{Z}$
(B) $\mathbb{Q} \nsubseteq \mathbb{Z}$
$\mathrm{C}) \mathbb{Q} \subseteq \mathbb{Z}$
(D) None of the previous
8) The number of edges of the graph $K_{4,5}$ is
(A) 9
(B) 40
(C) 20
(D) None of the previous
9) A graph with 4 vertices, each of degree 2 has
(A) 6 edges
(B) 4 edges
(C) 8 edges
(D) None of the previous
10) The grapg C_{3} is
(A) bipartite
(B) not connected
(C) not bipartite
(D) None of the previous
11) If $f(x, y, z)=x y+y+\overline{x z}$ is a Boolean function, then $f(0,1,0)$ equals
(A) 0
(B) 1
(C) None of the previous
II) A) Prove (by cases) that, for any integer n, the product $n(n+1)$ is even.
B) A sequence $\left(a_{n}\right)_{n \geq 1}$ is defined by $a_{1}=3$ and $a_{n}=7 a_{n-1}$ for $n \geq 2$. Prove that $a_{n}=3 \cdot 7^{n-1}$, for all $n \geq 1$.
III) A) On $\mathbb{Z} \times \mathbb{Z}$, define the relation R through

$$
(a, b) R(c, d) \Longleftrightarrow a \leq c \quad \text { and } \quad b \leq d
$$

i) Prove that R is a partial order relation;
ii) Is R a total order relation? Justify your answer.
B) A relation R on the set $\{a, b, c, d\}$ is represented by the diagraph below:

i) List the ordered pair in the relation R;
ii) Is the relation R reflexive? Justify your answer;
iii) Is the relation R transitive? Justify your answer;
iv) Is the relation R symmetric? Justify your answer;
v) Is the relation R antisymmetric? Justify your answer.
IV) A) Let G be the graph below:

i) Is the graph G connected? Justify your answer;
ii) Find $\operatorname{deg}(e)$;
iii) Find a path from a to b. What is its length?
iv) Is the graph G a subgraph of the wheel W_{4} ?
v) Is the graph G bipartite? Justify your answer.
B) Are the two graphs G and H, represented below, isomorphic? Justify.

V) Consider the tree below:

i) Which vertex is the root?
ii) List the internal vertices;
iii) List the leaves;
iv) What is the parent of e ?
v) What are the siblings of c ?
vi) Is this tree a binary tree? Justify your answer;
vii) Find the level of each vertex of the tree;
viii) What is the height of the tree? Justify your answer.
VI) A) Consider the Boolean function

$$
F(x, y, z)=\bar{x} \cdot y+\bar{x} \cdot \bar{y}+y \cdot z .
$$

a) Represent the values of F in a table;
b) Find the complete sum-of-products expansion of $F(x, y, z)$.
B) Write the dual of the expression

$$
x \cdot y+\overline{(\overline{x+y}) \cdot x}+\bar{y}=1 .
$$

C) a) Use K-maps to minimize the Boolean function

$$
F(x, y, z)=\bar{x} y z+x y z+x \bar{y} \bar{z}+x \bar{y} z .
$$

b) Draw the logic gates (circuits) representing the minimized function $F(x, y, z)$ obtained at a).

