الاختبار النهائي الفصل الأول ١٤٣٤ / ١٤٣٥ مقرر: ۰۰۰ حین

جامعة الملك سعود كلية العلوم قسم الإحصاء وبحوث العمليات

17_9

الوقت:	الأحد: ٢٦ / ٢١ م ١٤٣٥ هـ
	اسم الطالبة:
	رقم الشــــعبة:
	الرقم المتسلسل:
	مـدرس المادة:

Choose one answer for each question, then write the letter of the chooses answer in the box below

Question	1	2	3	4	5	6	7	8	9	10
Answer										

Question	11	12	13	14	15	16	17	18	19	20
Answer										

Question	21	22	23	24	25	26	27	28	29	30
Answer										

Question	31	32	33	34	35	36	37	38	39	40
Answer										

Question	41	42	43	44	45	46	47	48	49	50
Answer										

<u>Good Luck</u> Dr. Saba Alwan

Question (1)

The local ice cream shop keeps track of how much ice cream they sell versus the temperature on a day. They collected data for the last 12 days and here is the data as a Scatter Plot.

1- The relation between these two variables are

(a) Perfect positive correlation(b) low negative correlation(c) Perfect negative correlation(c) Perfect negative correlation

(c) No correlation.

2- If we draw the line of the linear regression, what is the best equation for this line

(a) Sell = temperature + 180 (b) Sell = -0.80 * temperature + 180

(c) Sell = 0.95 * temperature - 180 (d) Sell = 0.95 * temperature + 180 (e) None of these

Question (2)

Let X represents the daily times of eating a specific type of chocolate which takes the values =(0,1,2,5,6)

and Y represents the daily weight (in kg) of a sample of 15 children. If you regress Y on X and get the

following regression equation:

```
\hat{Y} = 0.5X + 25.3, then
```

3- The relation between X and Y is

(a) Linear positive (b) Linear negative (c) No linear relation

- 4- If the number of times of eating the chocolate decreases by 2, then the expected daily weight will
 - (a) Decreased by 0.5 kg. (b)Increased by 0.5 kg.
 - (c) Decreased by one kg (c) Increased by one kg (e) None of these

5- If there is <u>no</u> eating the specific chocolate in a day, then the daily weight of a children will be

- (a) Increased by **0.5 kg**. (b) Decreased by **0.5 kg**. (c) **25.3 kg**
- (c) Decreased by 25.3 kg (e) None of these
- 6- What the expected daily weight of a children if he eat the chocolate 4 times in a day
 (a) 30.3 kg.
 (b) 25.3 kg.
 (c) 25.8 kg
 (c) 27.3 kg
 (e) None of these
- 7- What the expected daily weight of a children if he eat the chocolate 10 times in a day (a) 30.3 kg. (b) 25.3 kg. (c) 25.8 kg (c) 27.3 kg (e) None of these

500 Zoo Final Exam 1st Term 1434/1435 H

2

Question (3)

To test whether the mean of a population is significantly differs from **50**, we take a sample of **40** person, then

person, then

8- The hypothesis that will be tested can be written as

(a) $H_0: \mu = 50$	<i>V</i> . <i>s</i>	$H_1: \mu > 50$	(b) $H_0: \mu = 50$	<i>V</i> . <i>s</i>	$H_1: \mu < 50$
(c) $H_0: \mu = 50$	<i>V</i> . <i>s</i>	$H_1: \mu \neq 50$	(d) $H_0: \mu > 50$	<i>V</i> . <i>s</i>	$H_1: \mu < 50$

9- The appropriate test is

(a) One way analysis of variance (b) Two way analysis of variance

(b) One sample t test (c) Tow paired sample t test (d) Significance of regression

If the result of the appropriate test by SPSS package is given below

	Test Value = 50							
				Mean	95% Col Interva Differ	nfidence I of the rence		
	t	df	Sig. (2-tailed)	Difference	Lower	Upper		
writing score	4.140	199	.000	2.7750	1.4533	4.0967		

10- The statistical decision is: (a)Reject H_0 (b) Accept H_0

11- Do you need to test the normality of the given data?

(a) yes (b) No

12- In order to dispense the normality condition, we can apply procedure

(a) Take two paired samples than compare
(b) Take a sample size more than 30.
(c) Take two independent samples than compare.
(d) Take two independent samples than compare.
(e) Put the homogeneity condition rather than the normality condition.
(e) None of these.

Question (4)

Suppose that we want to determine if the patients in two departments in a hospital having a different mean of hemoglobin level.

<u>We will follow our customary steps: ($\alpha = 0.05$)</u> 13- The null and alternative hypotheses are

(a) H ₀ : $\mu_{\text{Hospital 1}} = \mu_{\text{Hospital 2}}$	V.S	H ₁ : $\mu_{\text{Hospital 1}} \neq \mu_{\text{Hospital 2}}$
(b) H ₀ : $\mu_{\text{Hospital 1}} = \mu_{\text{Hospital 2}}$	V.S	H ₁ : $\mu_{\text{Hospital 1}} > \mu_{\text{Hospital 2}}$
(c) H ₀ : $\mu_{\text{Hospital 1}} = \mu_{\text{Hospital2}}$	V.S	H ₁ : $\mu_{\text{Hospital 1}} < \mu_{\text{Hospital 2}}$
(d) H ₀ : $\mu_{\text{Hospital 1}} > \mu_{\text{Hospital 2}}$	V.S	H ₁ : $\mu_{\text{Hospital 1}} < \mu_{\text{Hospital 2}}$
(e) None of these		

14- The appropriate statistical test procedure is

(a) One way analysis of variance	(b) Independent samples T test	
(c) Two way analysis of variance	(d) One sample T test	(e) Tow paired sample T test

If the SPSS result of the appropriate test is given by the table below, then

		Leve Tes Equa Varia	ene's t for lity of inces			t-test	for Equality of	Means		
									95 Confic Interva Differ	6% dence I of the rence
		F	stg.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upper
Score	Equal variances assumed	.006	.942	2.514	10	.031	3.5000	1.39244	.3975	6.603
	Equal variances not assumed			2.514	9.941	.031	3.5000	1.39244	.3949	6.605

15- If the data is <u>homogeneous</u>, then the significance level (P-value) is

(a) 0.776 (b) 0.942 (c) -1.180 (d) 0.031 (e) None of these

16- The statistical decision is

(a)Reject H_0 (Accept H_1) (b) Accept H_0 (Reject H_1)

If we want to test the **<u>homogeneity</u>** of the two samples (i.e. $H_{0:}$

 $\sigma_{\text{Hospital 1}}^2 = \sigma_{\text{Hospital 2}}^2 v.s \quad \sigma_{\text{Hospital 1}}^2 \neq \sigma_{\text{Hospital 2}}^2$), for this test **and** according the result by SPSS that be given above:

(a)Reject H_0 (Accept H_1) (b) Accept H_0 (Reject H_1)

500 Zoo Final Exam 1st Term 1434/1435 H

4

Question (5)

Suppose that we want to determine if the students have different numbers of younger and older siblings.

We will follow our customary steps:

19- The null and alternative hypotheses are

(a) H ₀ : $\mu_{older} = \mu_{younger}$	V.S	$H_1: \mu_{older} \neq \mu_{younger}$
(b) H ₀ : H ₀ : $\mu_{older} = \mu_{younger}$	V.S	H ₁ : $\mu_{older} > \mu_{younger}$
(c) H ₀ : H ₀ : $\mu_{older} = \mu_{younger}$	V.S	H ₁ : $\mu_{older} < \mu_{younger}$
(d) H ₀ : $\mu_{older} > \mu_{younger}$	V.S	H ₁ : $\mu_{older} < \mu_{younger}$
(e) None of these		

20- the appropriate statistical test is

(a) One way analysis of variance (b) Two way analysis of variance

(b) One sample t test (c) Tow paired sample t test (d) Independent samples t test

If the result of the **appropriate** test is given by the table below, then

			Std. Error	95% Confidence Interval of the Or Difference				
	Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Number of Older Siblings - Number of Younger Siblings	.111	1.980	.295	484	.706	.377	44	.708

21- The significance level (P-value) =

(a) 0.111 (b) 0.295 (c) 0.708 (d) 0.377 (e) None of these

22- The statistical decision is

(a) Reject H_0 (Accept H_1) (b) Accept H_0 (Reject H_1)

23- For each of the following examples, you would use a paired t-test.

I- Comparing the average height of men and women.

II- Comparing the weight of group before and after a diet.

III- Comparing patients given drug-A with those given drug-B.

IV- Comparing patients given a drug with those not given.

(a) I and II	(b) III and IV	(c) I only	(d) II only	(e) III only
(a) I allu II	(0) III and IV	(\mathbf{C}) I omy	(u) II omy	(c) III omy

24- For testing whether a specific drug has a good effect in reducing the mortality of a specific type of insects, after a month of drug use, we measure the difference means of number of deaths for a sample that is taking the drug and for a control sample and get the following result:

$\mu_{drug} - \mu_{No.drug=-6}$	P-value = 0.4

What can you conclude from this fact.

(a) The drug has a good effect in reducing the mortality.

(b) The drug has not a good effect in reducing the mortality.

(c) The drug has a good effect in reducing the mortality, but this effect is not significance.

(d) The drug has not a good effect in reducing the mortality, but this not effect is not significance.

500 Zoo Final Exam 1st Term 1434/1435 H

Question (6)

A researcher wants to study whether there is a significant effect of changing the concentration of a drug on recovering from a specific disease. He count the days that are taken to recovering from the disease for each patient and under the effect of the concentration. **3** patient are in each group. The result is given below:

Concentrations	days that are taken to recovering from the disease					
CON10%	48	47	55			
CON20%	64	64	55			
CON30%	52	49	55			
CON40%	41	44	50			

25-To test if there is a significant effect of changing the concentration, we can use

- (a) Tow ways analysis of variance
- (c) Simple regression

- (b) One way analysis of variance (d) One sample t test
- (e) Tow paired sample t test

26- Before make the appropriate test, we must test

(a) Normality of the data

- (b) Homogeneity of the data
- (c) Normality and Homogeneity of the data
- (d) Significance of the regression (d) One sample t test

If the result of the appropriate test by SPSS is given bellow

ANOVA							
NO.OFDAYS							
	Sum of Squares	df	Mean Square	F	Sig.		
Between Groups	402.000	3	134.000	7.053	.012		
Within Groups	152.000	8	19.000				
Total	554.000	11					

Post Hoc Tests

Multiple Comparisons

Dependent Variable: NO.OFDAYS Tukey HSD

		Mean Difference (l-			95% Confide	ence Interval
(I) CONS	(J) CONS	J)	Std. Error	Sig.	Lower Bound	Upper Bound
CON10%	CON20%	-11.000-	3.559	.059	-22.40-	.40
	CON30%	-2.000-	3.559	.941	-13.40-	9.40
	CON40%	5.000	3.559	.530	-6.40-	16.40
CON20%	CON10%	11.000	3.559	.059	40-	22.40
	CON30%	9.000	3.559	.129	-2.40-	20.40
	CON40%	16.000	3.559	.009	4.60	27.40
CON30%	CON10%	2.000	3.559	.941	-9.40-	13.40
	CON20%	-9.000-	3.559	.129	-20.40-	2.40
	CON40%	7.000	3.559	.276	-4.40-	18.40
CON40%	CON10%	-5.000-	3.559	.530	-16.40-	6.40
	CON20%	-16.000-	3.559	.009	-27.40-	-4.60-
	CON30%	-7.000-	3.559	.276	-18.40-	4.40
* The m	ean differenc	e is significant at	the 0.05 leve	1		

27- Your conclusion is

- (a) There is **an effect** of changing the concentration of a drug.
- (b) There is a significance effect of changing the concentration of at α =0.05
- (c) There is **no** effect of changing the concentration of a drug.
- (d) There is no significance effect of changing the concentration of at α =0.05
- (e) None of these

28- If there are a significance effect of changing the concentration, this effect comes from

(a) CON10% and CON20%	(b) CON10% and CON30%	(c) CON10% and CON40%
(d) CON20% and CON30%	(e) CON20% and CON40%	(f) CON30% and CON40%

29- The tests that are in Post Hoc table is called

(a) Tow ways analysis of variance	(b) One way analysis of variance	(c) Simple regression
(d) One sample t test	(e) Independent sample T test.	(f) None of these

Question (7)

According the following SPSS result of Regression coefficients.

(b) Economic = $38.373 + 0.508$ * Mathematics	(a) Mathematics = $38.373 + 0.508$ *Economic
(a) Mathematics = $0.508 + 38.373^*$ Economic	(b) Economic = $0.508 + 38.373$ * Mathematics

31- The Exponential relationship between Mathematics and Economic is

(a) Economic = $46.563 * e^{0.007 \text{ Mathematics}}$ (b) Mathematics = $46.563 * e^{0.007 \text{ Economic}}$

(c) b) Mathematics = $0.007 * e^{46.563 Economic}$ (d) Economic = $0.007 * e^{46.563 Mathematics}$

32- Which of the two models is significance at level= 0.05

(a) The linear model (b) The exponential model (c) Both models

Question (8)

Dose there is a relationship between the marks of 10 student in courses Mathematics and Statistics?

33- To answer this question you must used

(a) Tow ways analysis of variance	(b) One way analysis of variance	(c) Simple regression
(d) Correlation coefficient	(e) Independent sample T test.	(f) None of these

34- Before doing your procedure you must test

(a) Normality of Stat . data	(b) Normality of Math . data	(c) Normality of both Stat . and Math . data
(d) Homogeneity of Stat . data	(e) Homogeneity of Math. data	(f) Homogeneity of both Stat. and Math. data

35- If the data is normal distributed, you can use

(a) Person coefficient (b) Kendal coefficient (c) Spearman coefficient (d) Kendal or Spearman coefficients

36- If the data is not normal distributed, you can use

(a) Person coefficient (b) Kendal coefficient (c) Spearman coefficient (d) Kendal or Spearman coefficients

According the following SPSS result of correlation coefficients.

	Correlations			Correlations					
		Mathematics	Statistics	Control Varia	bles		Mathematics	Statistics	
Mathematics	Pearson Correlation	1	.959**	Economics	Mathematics	Correlation	1.000	.905	
	Sig. (2-tailed)		.000			Significance (2-tailed)		.001	
	Ν	10	10			df	0	7	
Statistics	Pearson Correlation	.959**	1		Statistics	Correlation	.905	1.000	
	Sig. (2-tailed)	.000				Significance (2-tailed)	.001		
	Ν	10	10			df	7	0	
**. Correlati	ion is significant at the O	.01 level (2-taile	d).						
(a) 0.487 38- Pers	(b) 0. con correlation b	959 Detween '''I	(d Mathema	e) 0.905 atics'' and ''	(Statistics''	d) 0.185 is	(e) 0.1	84	
(a) 0.487	(b) 0. 9	959	(0	e) 0.905	((d) 0.185	(e) 0.1	84	
39- The is	effect of variab	le '' Econor	nics '' or	the correl	ation betwo	een '''Mathematio	cs" and "St	atistics"	
(a) Posit	ive	(b) Nega	tive	(d) N	o effect				
40- Whi	ch of the correla	tion coeffic	cients is	purest and	nost accur	ate			
(a) 0.487	(b) 0.	959	(0	e) 0.905	((d) 0.185	(e) 0.1	84	

500 Zoo Final Exam 1st Term 1434/1435 H

8

For a sample of patients with a specific disease, the level of the response after the treatment is shown in the following chart

End The questions