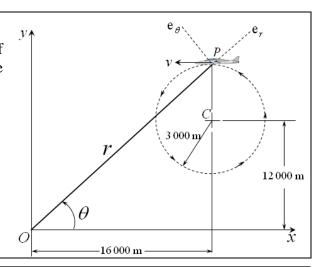
KING SAUD UNIVERSITY

College of Engineering Mechanical Engineering Department

Final Exam

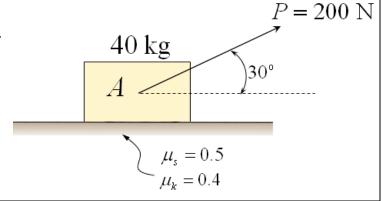
GE 202 DYNAMICS

(Duration of exam: 3 hours)


29 /12 / 2012

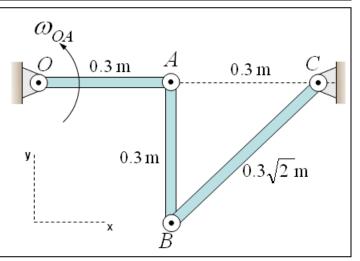
Problem 1

The aircraft P is traveling at a <u>constant speed</u> of $v = 100 \,\text{m/s}$ in the circle of radius 3000 m. For the instant shown determine the quantities:


$$r=?$$
, $\theta=?$, $\dot{r}=?$, $\dot{\theta}=?$, $\ddot{r}=?$, $\ddot{\theta}=?$

Note: $v_r = \dot{r}$, $v_\theta = r\dot{\theta}$ $a_r = \ddot{r} - r(\dot{\theta})^2$, $a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta}$

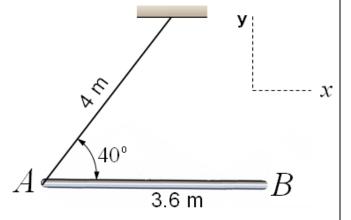
Problem 2


Compute the acceleration of block *A* for the instant shown?

Problem 3

Link OA has a <u>constant counter clockwise</u> angular <u>velocity</u> $\omega_{OA} = 4 \ rad / s$ during a short interval of its motion. For the position shown determine:

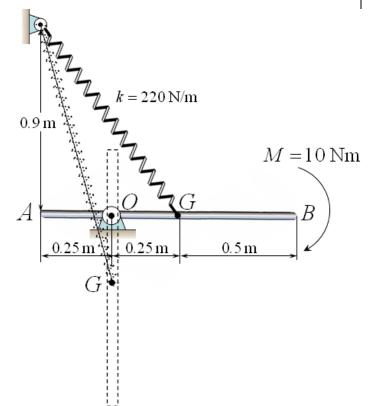
- a) The angular velocity ω_{AB} of link AB?
- **b)** The angular velocity $\omega_{\rm BC}$ of link BC?
- c) The angular acceleration α_{AB} of link AB?
- **d**) The angular acceleration α_{BC} of link BC?


Problem 4

The uniform 50 kg bar AB is supported by a cable at A. Immediately after the bar is released from rest in the position shown:

- a) Draw the Free body and Kinetics diagrams.
- **b**) Determine the angular acceleration of the bar, $\alpha = ?$
- c) Determine the tension in the cable, T = ?

Given: $I_G = \frac{1}{12}m \ L^2$, where *m* is the mass and


L is the length of the bar.

Problem 5

The 4 kg uniform slender rod AB rotates in the vertical plane about a pin at O. The spring attached to the rod at G has a stiffness of 220 N/m, and its unstretched length is $0.6\,\mathrm{m}$. The rod is released from rest in the position shown. Determine the angular velocity of the rod in the vertical position, $\omega=?$ when a constant couple moment M=10 Nm is applied to the end B.

Note: $I_G = \frac{1}{12}m \ L^2$, where *m* is the mass and *L* is the length of the slender rod.

GOODTUCK