KING SAUD UNIVERSITY

College of Engineering Mechanical Engineering Department

GE 202 DYNAMICS

Final Exam

1 / 7 /1431H (13/ 06 /2010G)

(Duration of exam: 3 hours)

Problem 1:

A circular path with radius r = 40 m is shown with two particles, one at A and another at B. Each particle is moving with a constant velocity of 10 m/s.

a) Find for particle A:

$$v_r, v_\theta$$

$$a_n, a_t, a_r, a_\theta$$

b) Find $\vec{v}_{A/B}$, $\vec{a}_{A/B}$

Problem 2:

At the shown instant the link AB has a clockwise angular velocity of 3 rad / s and angular acceleration of $5 rad / s^2$. At this instant;

- a) Calculate the angular velocity and angular acceleration of link *BC*, w_{BC} , α_{BC} ?
- b) Calculate the velocity and acceleration of the collar ${\bf C}$, v_{C} , a_{C} ?

Please turn over the page

Problem 3:

The 5-kg collar is released from rest at position A and slides on smooth circular path shown in **horizontal plane** under the tangential force 50 Newton. The spring stiffness $k = 30 \ N/m$, and it has an unstretched length of 4m. Calculate:

- a) The velocity of the collar at position B.
- b) The normal force at position B.
- c) Linear impulse from A to B.
- d) Angular impulse about O from A to B.

Problem 4:

The 4-kg wheel shown in the figure has a radius of gyration $k_G = 0.4 \ m$ about G. If a 10 Nm moment M is applied to the wheel. Show if the wheel slips or not?

Given: $\mu_S = 0.3 \text{ and } \mu_K = 0.25$.

- a) Calculate the acceleration of its mass center G, \vec{a}_G ?
- b) Calculate the angular acceleration of the wheel, α ?

Note: $I_G = m (k_G)^2$.

Problem 5:

The 8-kg slender bar OA is released from rest in the position shown in a **vertical plane** under constant moment $M = 20 \ Nm$. The spring stiffness is $10 \ N/m$, and its unstretched length is 3 meter. Calculate the angular velocity of the bar as the position $\theta = 60^{\circ}$ is passed.

Note:
$$I_O = \frac{1}{3} m L^2$$
, where *m* is the

mass and L is the length of the slender bar.

