KING SAUD UNIVERSITY

College of Engineering Mechanical Engineering Department

GE 202 DYNAMICS

Final Exam
(Duration of exam: 3 hours)

19 / 9 / 1433

Problem 1

A projectile is fired from the edge of a 150 m cliff with an initial velocity of 180 m/s at an angle of 30° with the horizontal. Find

- a) the horizontal distance from the gun to the point where the projectile strikes the ground, d = ?
- **b**) the greatest elevation above the ground reached by the projectile, $h_{\text{max}} = ?$

Problem 2

As it passes the position shown, the particle P has a constant speed $v = 100 \,\text{m/s}$ along the straight line shown. Determine the corresponding values of

a)
$$\dot{r}=?$$
, $\dot{\theta}=?$

b)
$$\ddot{r}=?$$
. $\ddot{\theta}=?$

Note: $v_r = \dot{r}$, $v_\theta = r\dot{\theta}$, $a_r = \ddot{r} - r(\dot{\theta})^2$, $a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta}$

Problem 3

When the mechanism is in the position shown, the velocity of the sliding collar is $v_A = 2.4 \,\text{m/s}$, and it is increasing at the rate of $a_A = 0.8 \,\text{m/s}^2$. For this position

- a) Calculate the *angular acceleration* of bar AB?
- **b**) Calculate the *angular acceleration* of bar *BC*?

Problem 4

A cord is wrapped around the inner drum of a wheel and pulled horizontally with a force of $P=200\,\mathrm{N}$. The wheel has a mass of $100\,\mathrm{kg}$ and a radius of gyration of $k_G=70\,\mathrm{mm}$. Knowing that $\mu_S=0.20$ and $\mu_K=0.15$

- a) Plot the FBD and Kinetic Diagrams.
- **b)** Calculate the acceleration of mass center G, $a_G = ?$
- c) Calculate the angular acceleration of the wheel, $\alpha = ?$

Note: $I_G = mk_G^2$, where *m* is the mass.

Problem 5

Initially at rest, a 3-meter long uniform slender bar OB has a mass of 10 kg and is subjected to an external moment of $M=50\,\mathrm{Nm}$ and an external force of $P=80\,\mathrm{N}$, which is always applied perpendicular to the end of the bar. The spring stiffness is $k=30\,\mathrm{N/m}$, also the spring has an unstretched length of 0.5 m. Determine the bar's angular velocity $\omega=?$ when it is released and rotated in a vertical plane downward 90° .

Note: $I_o = \frac{1}{3}mL^2$, where *m* is the mass and *L* is the length of the slender rod.

Problem 6

The spool has a mass of $40\,\mathrm{kg}$ and a radius of gyration $k_o=0.36\,\mathrm{m}$. If the block B has a mass of $30\,\mathrm{kg}$ and a force $P=125\,\mathrm{N}$ is applied to the cord, determine the speed of the block v=? in 5 seconds starting from rest. Neglect the mass of the cord.

GOOD LUCK