KING SAUD UNIVERSITY

College of Engineering Mechanical Engineering Department

GE 202 DYNAMICS

Summer Term Final Exam 15/8/1431H (25/8/2010 G)

(Duration of exam: 3 hours)

Problem 1:

The velocity and acceleration of particle A are known as $\vec{v}_A = 15 \vec{j}$ (m/s) and $\vec{a}_A = 12 \vec{e}_r$ (m/s²) when $\theta = 30^{\circ}$. At this instant

a) Determine the values of \dot{r} , $\dot{\theta}$ and $\ddot{\theta}$ for particle A.

Note:
$$a_r = \ddot{r} - r(\dot{\theta})^2$$
, $a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta}$
 $v_r = \dot{r}$, $v_\theta = r\dot{\theta}$

- **b)** Find a_n and a_t for particle A.
- c) Now consider particle B, which moves along x-direction with constant velocity of 20 (m/s). Determine $\vec{v}_{A/B}$ and $\vec{a}_{A/B}$ at the shown instant.

Problem 2:

The disk is rotating about a fixed point O with an angular velocity $\omega = 5 \, \text{rad/s}$ and an angular acceleration $\alpha = 6 \, \text{rad/s}^2$ CCW direction. For the shown instant determine

- a) The angular velocities of links AB and BC, $\omega_{AB} = ?$, $\omega_{BC} = ?$
- **b)** The angular accelerations of links AB and BC, $\alpha_{AB} = ?, \alpha_{BC} = ?$

Problem 3:

The 16-kg block, moving with velocity $v = 10 \,\mathrm{m/s}$ at time $t = 0 \,\mathrm{s}$, is acted on by a horizontal force which varies with time t as shown. When time $t = 5 \,\mathrm{s}$ block A collides to 20-kg initially stationary block B. If the coefficient of restitution for the collision is e = 0.7 and kinetic friction coefficient is $\mu_K = 0.2$ determine

- a) The velocity of block A at t=3 s.
- **b**) The linear impulse of block A just before the collision with block B.
- c) The velocities of block A and B after collision.
- **d)** If the spring stiffness is 2 N/m then the maximum deformation of the spring caused from block B.

Problem 4:

The uniform slender bar has a mass of 30-kg and is released from rest in the vertical position shown under a constant moment $M=20\,\mathrm{Nm}$. The spring stiffness is 150 N/m and its unstretched length is 0.3 m. Calculate the velocity with which end A strikes the horizontal surface, $v_A=?$

Note: $I_0 = \frac{1}{3}mL^2$, where *m* is the mass and *L* is the length of the slender bar.

