King Saud University Department of Mathematics

1st Semester 1433-1434 H

MATH 253-MATH 352 (Numerical Analysis)
Final Exam
Duration: 3 Hours

Student's Name	Student's ID	Lecturer's Name

Question No.	I	II	III	IV	V	VI	Total
Mark							

[I] Determine whether the following is True or False. Justify your answer.
(a) If the divided differences $f\left[x_{0}, x_{1}, x_{2}\right]=5$ and $f\left[x_{0}, x_{1}\right]=2$ are given for $x_{0}=1, x_{1}=2$ and $x_{2}=4$, then $f\left[x_{1}, x_{2}\right]=12$.
\qquad
(b) The sequence $\mathbf{x}^{(\mathbf{k})}=\left(k e^{-k}, e^{-k} \sin k, \frac{k-1}{k+1}\right)$ converges to $(0,0,1)$ as $k \rightarrow \infty$.
(c) $g(x)=\sqrt{\frac{x+2}{x^{2}+1}}$ has a fixed point at p, where p is a root of $f(x)=x^{4}+x^{2}-x-2$.
(d) If $|c|<3$ for $A=\left[\begin{array}{ccc}4 & -1 & c \\ c & 6 & 2 \\ 3 & 1 & 5\end{array}\right]$, then Gauss-Seidel method for solving $A \mathbf{x}=\mathbf{b}$ is convergent for any initial vector $\mathbf{x}^{(\mathbf{0})_{3 \times 1}}$ and any $\mathbf{b}_{3 \times 1}$.
(e) If the Trapezoidal rule approximation of $I=: \int_{0}^{2} f(x) d x$ is 6 and the Simpson's rule approximation of I is 7, then the Midpoint rule approximation of I is 6.5.
(f) The bisection method for root-finding generates a sequence $\left\{p_{n}\right\}$ approximating p with rate of convergence $O\left(2^{-n}\right)$.
[II] Use the data in the following table to answer all parts of this question.

x	1	2	3	4
$f(x)$	0	0.6931	1.098	1.386

(a) Approximate $f(2.5)$ using a Lagrange polynomial of degree 2.
(b) If $\left|f^{\prime \prime \prime}(\zeta)\right|<2$ for $1<\zeta<4$, find a bound for the error of your approximation in (a).
(c) Approximate $f^{\prime}(3)$ using a 3 -point formula.
[III] For $f(x)=x^{3}-3 x+2$,
(a) Why does Newton's method for finding the root $p=1$ of f converges only linearly?
(b) Use a modified Newton's method that converges quadratically to approximate the root $p=1$ of f with accuracy 10^{-3} and $p_{0}=1.6$.
$[\mathbf{I V}]$ For $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 1 & 2 & 3 \\ 2 & -1 & 4\end{array}\right]$,
(a) Find P, L and U that satisfies $P A=L U$, where P is a permutation matrix, L and U are lower and upper triangular matrices, respectively.
(b) Can you factorize A as $A=L D L^{T}$, where D and L are diagonal and lower triangular matrices, respectively? Justify your answer.
[V] For the system $A \mathbf{x}=\mathbf{b}$ with $A=\left[\begin{array}{ccc}3 & 1 & 0 \\ 1 & 5 & -1 \\ 0 & -1 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right]$,
(a) Show that A is positive definite.
(b) Use Jacobi method with $\mathbf{x}^{(\mathbf{0})}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$ to compute the second approximation $\mathbf{x}^{(\mathbf{2})}$ of the system's solution.
(c) Estimate the number of iterations needed to solve the system by Jacobi method with accuracy 10^{-4}.
(a) Suppose that $\widetilde{\mathbf{x}}$ is an approximation to the solution of $A \mathbf{x}=\mathbf{b}, A$ is nonsingular and \mathbf{r} is the residual vector for $\widetilde{\mathbf{x}}$. Prove that if $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{b} \neq \mathbf{0}$, then

$$
\frac{\|\mathbf{x}-\widetilde{\mathbf{x}}\|}{\|\mathbf{x}\|} \leq K(A) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}
$$

(b) For $A=\left[\begin{array}{cc}1.0001 & 1 \\ 0.5 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}3.0002 \\ 2\end{array}\right]$,
(i) Compute the exact solution \mathbf{x} for $A \mathbf{x}=\mathbf{b}$ by Gaussian elimination with partial pivoting.
(ii) Is A ill-conditioned? Justify your answer.
(iii) (BONUS) Show that if $\|\mathbf{r}\|<\epsilon$ then $\|\mathbf{x}-\widetilde{\mathbf{x}}\|<5.4 \epsilon$, for any $\epsilon>0$.

