Math 246	Name:
Fall 2015	
Final Term Exam	
24/6/2015	
Time Limit: 3 hours	Student Number

Grade Table (for teacher use only)					
Questions	Points	Student degree			
Ι	10				
II	5				
III	8				
IV	7				
V	7				
VI	3				
Total	40				

Grade Table (for teacher use only)

Course Work Grades	
Final exam Grades	
Total	

Question I [10 points]

Choose the correct answer. Write your answer in the following table.

1	2	3	4	5	6	7	8	9	10

1. If $W = \text{span}\{(2, 4, -2), (-2, -2, 2), (1, 3, -1)\}$ then dim W is

A. 3 B. 2 C. 1 D. None of the previous

2. If $T : \mathbb{R}^2 \to \mathbb{R}^4$ is given by $T(x_1, x_2) = (x_2, -x_1, x_1 + 3x_2, x_1 - x_2)$ where $(x_1, x_2) \in \mathbb{R}^2$, the standard matrix for the transformation T is given by

 A. $\begin{bmatrix} 1 & 4 & 2 & 3 \\ 5 & 1 & 2 & 6 \end{bmatrix}$ B. $\begin{bmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 3 \\ 1 & -1 \end{bmatrix}$ C. $\begin{bmatrix} 0 & -1 & 1 & 1 \\ 1 & 0 & 3 & -1 \end{bmatrix}$ D. None of the

previous

- 3. If $\lambda^2(\lambda+3)^2(\lambda-4)=0$ is the characteristic equation of a matrix A then size A is
 - A. 3 B. 4 C. 5 D. 0
- 4. The image of $(6, -\sqrt{3})$ when it is rotated through an angle $\theta = \frac{\pi}{3}$ is
 - A. $\left(-\frac{9}{2}, \frac{5\sqrt{3}}{2}\right)$ B. $\left(\frac{9}{2}, \frac{5\sqrt{3}}{2}\right)$ C. $\left(\frac{5\sqrt{3}}{2}, \frac{9}{2}\right)$ D. None of the previous

If M_{22} has the inner product

$$\langle A, B \rangle = \operatorname{tr}(A^T B)$$

and

$$A = \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} -2 & 3 \\ -2 & 5 \end{bmatrix}$$

then

5.
$$d(A, B) =$$

A. 5 B. 0 C. 6 D. 2
and

6. $ A $ is
A. 14 B. 1 C. $2\sqrt{7}$ D. $\sqrt{14}$
7. If $A = \begin{bmatrix} 5 & 1 \\ -2 & 2 \end{bmatrix}$ then the eigenvalues of A are
A. $\{3,4\}$ B. $\{-3,-4\}$ C. $\{3,-4\}$ D. None
8. Let \mathbb{R}^3 have the Euclidean inner product. If $u = (k, -2, 4), v = (k, k, -2)$ are orthogonal then
A. $k \in \{-4, 2\}$ B. $k = 2$ C. $k \in \{-2, 4\}$ D. None
9. Let \mathbf{P}_2 have the standard norm then the cosine of the angle between
$P = 2x + x^2$, and $q = 1 - x + 2x^2$
is
A. $\frac{\pi}{2}$ B. 0 C. 1 D. $-\frac{\pi}{2}$
10. If $T: M_{22} \to \mathbb{R}$ is given by $T(M) = \operatorname{tr}(M)$
then $M \in KerT$ if and only if
A. $M = 0$ B. $M = \begin{bmatrix} 0 & b \\ c & 0 \end{bmatrix}$, $b, c \in \mathbb{R}$ C. $M = M^T$ D. None of the previous

(

)

)

Question II[5 points]

Determine whether the following is True or False.

- 1. The vectors $\{(1,0,0), (2,0,0), (3,3,3)\}$ is a basis of \mathbb{R}^3 ()
- 2. The set $\{(x,y): x, y \in \mathbb{R}, x \ge 0\}$ with the standard operations on \mathbb{R}^2 is a subspace of \mathbb{R}^2
- 3. If 5 is an eigenvalue of a matrix A then $\frac{1}{25}$ is an eigenvalue of A^{-2} . ()
- 4. If A is invertible then Nullity A = 0.
 - 5. $T(A) = \det A$ is a linear transformation from M_{nn} into \mathbb{R} . (

Question III[8 points]

(a) Let S be a finite set of vectors in a finite dimensional vector space V. Prove that if S spans V but is not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.

Find Bank	A and Nullity	τ Δ		
r mu rtank	1 and rounity	71.		

Question IV [7 points] 5 0 0 Let $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$ (a) Find the eigenvalues of A. (b) Find the eigenspace of each eigenvalue.

Question V [7 points]

(a) Prove Cauchy Schwartz inequality: If u and v are vectors in a real inner product space V, then

 $| < u, v > | \le ||u|| ||v||.$

(b) Apply the Gram-Schmidt process to transform the basis

$$\{u_1 = (1,0), u_2 = (3,5)\}\$$

into an orthonormal basis.

Question VI [3 points]

Consider the basis $\{v_1, v_2\}$ for \mathbb{R}^2 , where $v_1 = (1, 1)$ and $v_2 = (1, 0)$ and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator for which

$$T(v_1) = (2,3)$$
 and $T(v_2) = (-2,0).$

- (a) Find a formula for $T(x_1, x_2)$.
- (b) Use (a) to find T(5, -3).

