Final Exam, Semester II, 1445 Dept. of Mathematics, College of Science, KSU Math: 280 - Full Mark: 40 - Time: 3H
 immediate

Question 1[3+3]

1. Prove that for every real number, there exists an integer n such that $n-1 \leq x<n$. Find such n if $x=-\frac{17}{5}$.
2. Determine $\sup (A)$ and $\inf (A)$ where $A=\left\{x \in \mathbb{R}: x^{2}-9<0\right\}$, and justify your answer.

Question $2[2+2+3]$
Use the definition of the limit to find the following if they exists.

1. $\lim _{n \rightarrow \infty} \frac{n^{3}}{2 n^{4}+1}$.
2. $\lim _{n \rightarrow \infty} c^{\frac{1}{n}}$, where $c>1$.
3. $\lim _{n \rightarrow \infty} n a^{n}=0$, where $0<a<1$.

Question 3[3+3]
Discuss the convergence of the following series:
(i) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt{n}}{n^{2}+1}$
(ii) $\sum_{n=1}^{\infty} \frac{2^{n} n!}{n^{n}}$

Question $4[3+3]$

1. Find the following limits, if they exist, and prove using the definition of the limit or sequence characterization:
a) $\lim _{x \rightarrow 0} \frac{x^{2}}{|x|} \quad$ (b) $\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}$.
2. Let

$$
f(x)=\left\{\begin{array}{c}
x^{2} \text { if } x \in \mathbb{Q} \\
0 \text { if } x \notin \mathbb{Q}
\end{array}\right.
$$

Prove that f is differentiable at $x=0$, and evaluate $f^{\prime}(0)$.
Question 5[3+3+3]

1. Determine a real interval of length $\frac{1}{2}$ where the equation

$$
x^{3}-6 x^{2}+\frac{5}{2}=0,
$$

has a solution. Justify your answer.
2. Prove that if f is continuous on $[a, b]$ and has zero derivative on (a, b), then f is constant.
3.Use Taylor's theorem with $n=3$ and $x_{0}=0$ to obtain a suitable approximation of the function $f(x)=\sqrt{1-x}$ by a polynomial of degree 3 .

Question 6[4+1+1]
Let

$$
f(x)=\left\{\begin{array}{c}
1 \text { if } x \in \mathbb{Q} \cap[-2,2] \\
-1 \text { if } x \in \mathbb{Q}^{c} \cap[-2,2]
\end{array}\right.
$$

i) Find the upper and the lower integral of f over $[-2,2]$.
ii) Is f integrable on $[-2,2]$? justify your answer.
iii) Is $|f|$ integrable on $[-2,2]$? justify your answer.

