King Saud University Mathematics Department Math 244 Final Exam

Name: ID: Section: Teacher:

Quiztion	I	II	Ш	IV	V	VI	Total
mark							
mark							

I. Determine if the statement is always true or sometimes false, and	justify	your
answer with a logical argument or a counter example. 1) The set $\{1, x, e^x\}$ is linearly independent.	()
2) The reflection operator about the x -axis in \mathbb{R}^2 is one-to-one.	()
3) Whenever 4 is an eigenvalue of a matrix A then 12 is an eigenvalue of A^3 .	()
4) $V = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}, a, b \in R \right\}$ with standard addition and scalar multiplication of many scalar multiplication of many scalar multiplication and scalar multiplication of many	natrices	, is a
subspace of $M_{2\times 2}$.	()
5) $W = \{(a,b), a, b \in R, and \ a^2 = b^2\}$ is a suspace of R^2 .)
((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

II. Choose the correct answer:

- 1) If B is 5×7 and nullity (B) = 3 then nullity of (B^t) is
- a) 2

b)5

- d) 1

- 2) If $v_1 = (2,1)$, $v_2 = (8,4)$ then the set $\{v_1, v_2\}$
 - a) is a basis of \mathbb{R}^2 .
- b) spans R^2 .
- c) linearly dependent.
- d) linearly independent.
- 3) The vector (a,a,b) is a linear combination of the vectors (0,1,-1), (1,-1,0) if the relation between a and b is
- a) a = 2b
- b) b = 2a
- c) a = -2b
- d) b = -2a

- 4) If $A = \begin{bmatrix} 1 & -1 & 3 \\ 2 & -3 & 6 \\ -1 & 4 & -2 \end{bmatrix}$, then A(acty(A)) =
- a) -4I

- c) -2I
- d) I

- 5) If $W = span\{(1,-1,0,1),(-1,1,1,0),(2,-2,1,3)\}$ then
- a) $\dim W = 1$
- b) $\dim W = 3$ c) $\dim W = 2$
- d) $\dim W = 4$

- 6) If A is 4×6 then
- a)The column vectors are linearly dependent.
- b) The column vectors are linearly independent.
- c) dim (column space)= 6.
- d) column space (A) row space (A).
- 7) The values of λ which make the vectors $\{(1,-1,-\lambda),(1,2,-\lambda),(\lambda,0,1-2\lambda)\}$ linearly independent are c) $R \setminus \{-1\}$ d) $R \setminus \{1,-1\}$
- a) R
- b) R\{l}

- 8) If u, v are vectors in a vector space V such that ||2u + 3v|| = ||2u 3v|| then
- a) $u = \frac{3}{2}v$
- b) $u \cdot v = 0$ c) $u = \frac{-3}{2}v$
 - d) u = v

Question number	1	2	3	4	5	6	7	8
number								
Answer								
L				<u> </u>				

III.								
1)			_		stem by <u>Guassior</u> 1	<u>ı eliminatio</u>	<u>u</u>	
2)	- x,	$+ x_2 - 2x_2$	-3r	+ 3x ₄	= 1 =4			
2)	2r	+ X ₂	-2x	+ r	= −3			
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
					, . , . , , , , , , , , , , , , , , , ,		,	. , ,
					•			
							, ,	
					• • • • • • • • • • • • • • • • • • • •			
********	* * * * * * * * *						· · · · · · · · · · · · · · · · · · ·	
	• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •			
	•••••		• • • • • • • • • • • • • • • • • • • •					
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •	
								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Fin a) b)	d value The sy The sy		o that : s one so s infinit	lution. ely man	= 2a $= -2$ solutions.			
c)	The sy	stem is	inconsis	tent.				
	•••••							
							* * * * * * * * * * * * * * * * * * * *	. ,
	•••••				• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
	•••							
	• • • • • • • • • • • • • • • • • • • •				**************			
	*							• • • • • • • • • • • • • • • • • • • •
					,			
	•		,		.,			
								• • • • • • • • • • • • • • • • • • • •
			,,,					
					• • • • • • • • • • • • • • • • • • • •			.,
			•••••		• ,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

<u>IV</u> .		
	Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T(x, y) = (x - 2y, 2x + y, 3x)$ a) Show that T is a linear transformation. b) Find the standard matrix of T .	
	,	
2)	If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that $T(1,-2) = (-1,1)$, and $T(-2,3) = (0,-2)$. Then find $T(x,y)$.	
,		

<u>V.</u> 1)	Find a so then exp vectors.	ubset of the vector tress each vector th	s that forms a bas nat is not in the ba	sis for the space spa asis as a linear com	anned by these vectors, bination of the basis
$v_i = (1, -1)$	-1,5,2)	$v_2 = (-2,3,1,0)$	$v_3 = (4, -5, 9, 4)$	$v_4 = (0,4,2,-3)$	$v_5 = (-7,18,2,-8)$
	• • • • • • • • • • • • • • • • • • • •				/ * / / / / / / / / /
		,	• • • • • • • • • • • • • • • • • • • •		.,,
	• • • • • • • • • • • • • • • • • • • •	*			***************************************
					•,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		• • • • • • • • • • • • • • • • • • • •			······································
	••••				
•					
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
· · · · · · · · · · · · · · · · · · ·	·		,	****************	
	•••••				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • • •			. , , ,	
	••••••		,		
				.,.,	
••••	*********				
	• • • • • • • • • • • • •				
		**,			
				.,.,	,
				.,	

2) If
$$A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix}$$
, then

a) Find the rank and nullity of A.b) Find a basis of the nullspace of A.
······································
······································

	Let		3	0	1
<u>VI</u> .	Let	A =	0	2	0
			1	0	3

 a) Show that the distinct eigenvalues of A are 2,4. b) Find, if possible, a matrix P which diagonalizes A, and write it's diagonal form.
······································
······································
······································
······································
······································
······································
7