King Saud University

Faculty of Sciences

Department of Mathematics

Final Examination	Math 132	Semester I	1439-1440	Time: 2H	
I mai Bhailliadion	1110011 102	Belliebter 1	1100 1110	1111101 211	

Exercise 1: (4+5+4+5)

1. Without using truth tables, prove the following logical equivalence:

$$\neg[\neg p \land (q \to p)] \equiv p \lor q$$

2. Consider the sequence $\{a_n\}_{n=0}^{\infty}$ defined as follows:

$$a_0 = 1, a_1 = 2$$
, and $a_{n+1} = 5a_n - 6a_{n-1}; \forall n \ge 1$.

Use mathematical induction to prove that $a_n = 2^n$, for each integer n, with $n \ge 0$.

3. Consider the partial ordering P on the set $A := \{a, b, c, d, e\}$ defined by:

$$P = \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (c, b), (c, d), (d, e), (c, e)\}.$$

- (a) Draw the Hasse diagram of P.
- (b) Is P a total ordering?
- 4. Let E be the relation defined on the set of real numbers as follows:

$$(a E b)$$
 if and only if $(a - b)$ is an integer.

- (a) Prove that E is an equivalence relation.
- (b) What is the equivalence class [1], of the element 1 for this equivalence relation?
- (c) Is $\frac{3}{2} \in [\frac{2}{3}]$?

Exercise 2: (8+3)

- 1. Consider the sets $A := \{a, b, c, d, e\}$ and $B := \{1, 2, 3, 4\}$, and the function $f : A \longrightarrow B$ defined by: f(a) = 1, f(b) = f(c) = 2, and f(d) = f(e) = 3.
 - (a) Find the image of each of the sets $\{a, b, c\}$, $\{d, e\}$ and $\{b, c, d, e\}$.
 - (b) Find the inverse image of each of the sets $\{1, 2, 3\}, \{3\}$ and $\{4\}$.
 - (c) For the function f, determine whether it is one-to-one, and whether it is onto B. (Justify your answer).
- 2. Consider a nonempty set X, and let $f: X \longrightarrow X$ be a function.

Prove that if the composite $f \circ f$ is a bijection, then f is a bijection.

Exercise 3:(3+8)

- 1. Give four infinite sets A,B,C and D such that: $\overline{\overline{A}} < \overline{\overline{B}} < \overline{\overline{C}} < \overline{\overline{D}}$. (Justify your answer).
- 2. Determine whether each of the following statements is true or false. (Justify your answer).
 - (i) The set $\{\frac{3}{5k}; k$ is an integer with $k \ge 1\}$ is denumerable.
 - (ii) If A is an infinite set, then its power set $\mathcal{P}(A)$ is an uncountable set.
 - (iii) Given two sets A and B, if $\overline{\overline{A}} \leq \overline{\overline{B}}$, then $A \subseteq B$.
 - (iv) If B is a finite subset of a denumerable set A, then the set A B is denumerable.