King Saud University Department of Mathematics

First Semester 1436-1437 H

MATH 352 (Numerical Analysis)
Final Exam
Duration: 3 Hours

Student's Name	Student's ID	Group No.

Question No.	I	II	III	IV	V	VI	Total
Mark							

[I] Determine whether the following is True or False. Justify your answer.
(1) The number of iterations needed to solve $x^{3}-2^{x}$ on $[0,2]$ with accuracy 10^{-3} by the Bisection method is 6 . (
(2) The sequence $p_{n}=p_{n-1}-\frac{p_{n-1}^{3}-5}{8}$ converges to $\sqrt[3]{5}$ faster than the sequence $p_{n}=\sqrt{\frac{5}{p_{n-1}}}$.
\qquad
(3) If $f(x)=x^{4}-4 x+3$ then the Newton's Method for finding the root $p=1$ of f converges quadratically. (
(4) If $A=\left[\begin{array}{ccc}3 & -1 & 1 \\ 2 & 5 & -2 \\ 1 & 0 & 4\end{array}\right]$ then the Jacobi Method for solving $A \mathbf{x}=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]$ is convergent for any initial vector $\mathbf{x}^{(\mathbf{0})}$. ()
(5) The matrix $C=\left[\begin{array}{cc}1.001 & 3 \\ 1 & 3\end{array}\right]$ is ill-conditioned.
[II] Choose the correct answer.

(1) The data | x | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{f}(\mathrm{x})$ | -1 | 3 | 1 | -1 |
| has the following interpolation polynomial | | | | | |

(a) $p(x)=3-2(x+1)+x\left(x^{2}-1\right)$
(b) $p(x)=-1+4(x+2)-3(x+2)(x+1)$
(c) $\frac{-x\left(x^{2}-1\right)(x-2)}{24}+\frac{\left(x^{2}-4\right)(x-1)}{2}$
(2) If $f(1)=1, f(1.2)=1.2625$ and $f(1.4)=1.6595$, then the Backward-Difference formula to determine $f^{\prime}(1.2)$ gives
(a) $f^{\prime}(1.2)=1.637$
(b) $f^{\prime}(1.2)=1.3125$
(c) $f^{\prime}(1.2)=1.985$
(3) If the quadrature formula $\int_{0}^{2} f(x) d x=c_{0} f(0)+c_{1} f(1)+c_{2} f(2)$ is exact for all polynomials of degree less than or equal to 2 , then
(a) $c_{0}=c_{1}=c_{2}=\frac{1}{3}$
(b) $c_{0}=c_{2}=\frac{1}{3}, c_{1}=\frac{4}{3}$
(c) $c_{0}=c_{1}=\frac{1}{3}, c_{2}=\frac{4}{3}$
(4) Solving the system

$$
\begin{aligned}
2.53 x_{1}-10.1 x_{2}+11.7 x_{3} & =-99.2 \\
-2.53 x_{1}+10.1 x_{2}-5.83 x_{3} & =100 \\
5.10 x_{1}-11.8 x_{2}+17.5 x_{3} & =-116
\end{aligned}
$$

by Gaussian elimination with scaled partial pivoting, the first row interchange needed is
(a) $R_{1} \longleftrightarrow R_{2}$
(b) $R_{1} \longleftrightarrow R_{3}$
(c) $R_{2} \longleftrightarrow R_{3}$
(5) If $T=\left[\begin{array}{ccc}3 & -2 & 5 \\ 1 & 0 & 7 \\ 0 & 0 & 2\end{array}\right]$, then $\rho(T)$ equals
(a) 1
(b) 2
(c) 3
(6) If $M=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$, then $\|M\|_{2}$ equals
(a) 3
(b) 9
(c) $7+\sqrt{40}$
(a) Determine the value of h that will ensure an approximation error of less than 10^{-4} when approximating $\int_{0}^{\pi} \cos x^{2} d x$ by the Composite Trapezoidal Rule.
(b) Approximate $\int_{0}^{\pi} \cos x^{2} d x$ using the Composite Midpoint Rule with $n=6$.
(c) How accurate is the approximation in (b)?
(i) Let $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 4 & 7 \\ -1 & 2 & 5\end{array}\right]$.
(a) Find the permutation matrix P, a lower triangular matrix L with ones on its diagonal and an upper triangular matrix U so that $P A=L U$.
(b) Use (a) to show that A is invertible.
(ii) Let $B=\left[\begin{array}{lll}4 & 2 & 2 \\ 2 & 6 & 2 \\ 2 & 2 & 5\end{array}\right]$.
(a) Prove that B is positive definite.
(b) Factorize B as $L D L^{T}$, where L is a lower triangular matrix and D is a diagonal matrix.
$[\mathbf{V}]$ Let $A=\left[\begin{array}{cc}0.04 & 51.2 \\ -6.2 & 8.1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}55.2 \\ -53.9\end{array}\right]$.
(a) Use Gaussian elimination with partial pivoting and 3-digit chopping arithmetic to approximate the solution of the system $A \mathbf{x}=\mathbf{b}$.
(b) Compute the residual vector $\mathbf{r}=\mathbf{b}-A \widetilde{\mathbf{x}}$, where $\widetilde{\mathbf{x}}$ is the approximation in (a).
(c) Use one iteration of the iterative refinement technique to improve $\widetilde{\mathbf{x}}$.

$$
\begin{aligned}
2 x_{1}-x_{2}+x_{3} & =-1 \\
2 x_{1}+2 x_{2}+x_{3} & =4 \\
-x_{1}-x_{2}+2 x_{3} & =5
\end{aligned}
$$

(a) Find the second iteration $\mathbf{x}^{(\mathbf{2})}$ of the Gauss-Seidel method to approximate the solution of the system using $\mathbf{x}^{(\mathbf{0})}=\mathbf{0}$.
(b) Compute $\left\|\mathbf{x}^{(2)}-\mathbf{x}^{(1)}\right\|_{\infty}$.

