

Student's Name	Student's ID	Group No.		

Question No.	Ι	II	III	IV	V	VI	Total
Mark							

[I] Determine whether the following is True or False. Justify your answer.

[6 Points]

(1) The number of iterations needed to solve $x^3 - 2^x$ on [0, 2] with accuracy 10^{-3} by the Bisection method is 6. ()

(2) The sequence
$$p_n = p_{n-1} - \frac{p_{n-1}^3 - 5}{8}$$
 converges to $\sqrt[3]{5}$ faster than the sequence $p_n = \sqrt{\frac{5}{p_{n-1}}}$. ()

(3) If $f(x) = x^4 - 4x + 3$ then the Newton's Method for finding the root p = 1 of f converges quadratically. ()

(4) If
$$A = \begin{bmatrix} 3 & -1 & 1 \\ 2 & 5 & -2 \\ 1 & 0 & 4 \end{bmatrix}$$
 then the Jacobi Method for solving $A\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$ is **convergent** for any initial vector $\mathbf{x}^{(0)}$. ()

(5) The matrix $C = \begin{bmatrix} 1.001 & 3 \\ 1 & 3 \end{bmatrix}$ is **ill-conditioned**.

[II] Choose the correct answer.

[9 Points]

)

(

(a)
$$p(x) = 3 - 2(x+1) + x(x^2 - 1)$$
 (b) $p(x) = -1 + 4(x+2) - 3(x+2)(x+1)$ (c) $\frac{-x(x^2 - 1)(x-2)}{24} + \frac{(x^2 - 4)(x-1)}{24}$

(2) If f(1) = 1, f(1.2) = 1.2625 and f(1.4) = 1.6595, then the **Backward-Difference** formula to determine f'(1.2) gives

(a)
$$f'(1.2) = 1.637$$
 (b) $f'(1.2) = 1.3125$ (c) $f'(1.2) = 1.985$

(3) If the quadrature formula $\int_0^2 f(x)dx = c_0 f(0) + c_1 f(1) + c_2 f(2)$ is **exact** for all polynomials of degree less than or equal to 2, then

(a)
$$c_0 = c_1 = c_2 = \frac{1}{3}$$
 (b) $c_0 = c_2 = \frac{1}{3}, c_1 = \frac{4}{3}$ (c) $c_0 = c_1 = \frac{1}{3}, c_2 = \frac{4}{3}$

(4) Solving the system

by Gaussian elimination with scaled partial pivoting, the first row interchange needed is

(a)
$$R_1 \leftrightarrow R_2$$
 (b) $R_1 \leftrightarrow R_3$ (c) $R_2 \leftrightarrow R_3$

(6) If $M = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$, then $||M||_2$ equals

 $[\mathbf{III}]$

- (a) **Determine** the value of h that will ensure an approximation error of less than 10^{-4} when approximating $\int_0^{\pi} \cos x^2 dx$ by the Composite Trapezoidal Rule.
- (b) **Approximate** $\int_0^{\pi} \cos x^2 dx$ using the Composite Midpoint Rule with n = 6.
- (c) **How accurate** is the approximation in (b)?

[7 Points]

(i) Let
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 4 & 7 \\ -1 & 2 & 5 \end{bmatrix}$$
.

- (a) Find the permutation matrix P, a lower triangular matrix L with ones on its diagonal and an upper triangular matrix U so that PA = LU.
- (b) Use (a) to **show** that A is invertible.

(ii) Let
$$B = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 6 & 2 \\ 2 & 2 & 5 \end{bmatrix}$$
.

- (a) **Prove** that B is positive definite.
- (b) Factorize B as LDL^T , where L is a lower triangular matrix and D is a diagonal matrix.

$$\begin{bmatrix} \mathbf{V} \end{bmatrix} \text{Let } A = \begin{bmatrix} 0.04 & 51.2\\ -6.2 & 8.1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 55.2\\ -53.9 \end{bmatrix}.$$
 [6 Points]

- (a) Use Gaussian elimination with **partial pivoting** and 3-digit **chopping** arithmetic to approximate the solution of the system $A\mathbf{x} = \mathbf{b}$.
- (b) **Compute** the residual vector $\mathbf{r} = \mathbf{b} A\tilde{\mathbf{x}}$, where $\tilde{\mathbf{x}}$ is the approximation in (a).
- (c) Use one iteration of the iterative refinement technique to improve $\tilde{\mathbf{x}}$.

[VI] Consider the system

$$2x_1 - x_2 + x_3 = -1$$

$$2x_1 + 2x_2 + x_3 = 4$$

$$-x_1 - x_2 + 2x_3 = 5$$

- (a) Find the second iteration $\mathbf{x}^{(2)}$ of the **Gauss-Seidel** method to approximate the solution of the system using $\mathbf{x}^{(0)} = \mathbf{0}$.
- (b) Compute $\|\mathbf{x}^{(2)} \mathbf{x}^{(1)}\|_{\infty}$.