

King Saud University Department of Mathematics 1st Semester 1435-1436 H

MATH 244 (Linear Algebra) Final Exam

Duration: 3 Hours

Student's Name	Student's ID	Group No.	

Question No.	Ι	II	III	IV	V	VI	Total
Mark							

[I] Determine whether the following is True or False. [9 Points]

(1) If
$$A = \begin{bmatrix} 3 & -1 \\ 0 & -2 \end{bmatrix}$$
, then $A^2 - A - 6I_2 = 0_{2 \times 2}$.

(2) If
$$(X - I_2)^{-1} = \begin{bmatrix} 5 & 3 \\ 2 & 1 \end{bmatrix}$$
, then $X = \begin{bmatrix} 2 & -3 \\ -2 & 6 \end{bmatrix}$.

(3) The matrix
$$\begin{bmatrix} 5 & 2 & 1 \\ 0 & -1 & 3 \\ 0 & 0 & 4 \end{bmatrix}$$
 is invertible. ()

(4) If the matrix
$$\begin{bmatrix} 1 & x+4 & 1 \\ 3 & 0 & 4 \\ 1 & x+y & 2 \end{bmatrix}$$
 is symmetric, then $x=-1$ and $y=5$.

(5) If
$$V = \mathbb{R}^2$$
 with the following addition and scalar multiplication on $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$:
 $\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2), k\mathbf{u} = (2ku_1, 2ku_2), \text{ then } V \text{ is a vector space.}$

(6)
$$W = \{A \in M_{nn}, tr(A) = 0\}$$
 is a subspace of M_{nn} .

OVER

(7)
$$\{x^2+1, -x^2+1, 6x^2+5x+2\}$$
 spans P_2 .

()

(8)
$$S = \{(0, -1, 1), (2, 1, 3), (1, 2, 0)\}$$
 is linearly independent.

()

(9)
$$\{x, \cos x\}$$
 is linearly dependent.

)

(

(10) If
$$W = \{(a, b, c, d) : a + b = d, a - b = c\}$$
, then $dim(W) = 3$.

(

)

)

(11) If B is a
$$7 \times 5$$
 matrix, then $rank(B) \leq 6$.

()

(12) If
$$\mathbf{u}$$
 and \mathbf{v} are orthogonal vectors in a vector space V , then $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$..

[II] Choose the correct answer. [8 Points]

- (1) If $det(2AB^T) = 8$, $A = \begin{bmatrix} 1 & -3 \\ 2 & 2 \end{bmatrix}$ and B is a 2×2 matrix, then det(B) equals.
 - (a) $\frac{1}{2}$

(b) $\frac{1}{4}$

(c) 4

(d) None of the previous

(2) The condition on b_1 , b_2 and b_3 which guarantees that the following system is consistent

$$\begin{aligned}
 x_1 - 2x_2 + 5x_3 &= b_1 \\
 4x_1 - 5x_2 + 8x_3 &= b_2
 \end{aligned}$$

$$-3x_1 + 3x_2 - 3x_3 = b_3$$

(a)
$$b_3 + b_2 - b_1 = 0$$

(a)
$$b_3 + b_2 - b_1 = 0$$
 (b) $b_3 - b_2 + b_1 = 0$ (c) $b_2 - 4b_1 = 0$

(c)
$$b_2 - 4b_1 = 0$$

(d) None of the previous

- (3) If $A^{-1} = \begin{bmatrix} -3 & -2 & 2 \\ 2 & 1 & -1 \\ 1 & 0 & 2 \end{bmatrix}$, then adj(A) equals
- (a) $\frac{1}{2}\begin{bmatrix} -3 & -2 & 2 \\ 2 & 1 & -1 \\ 1 & 0 & 2 \end{bmatrix}$ (b) $2\begin{bmatrix} -3 & -2 & 2 \\ 2 & 1 & -1 \\ 1 & 0 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 2 & 0 \\ -5/2 & -4 & 1/2 \\ -1/2 & -1 & 1/2 \end{bmatrix}$ (d) None of the previous
- (4) If $S = \{x + 1, x + 2, x^2\}$ is a basis for P_2 and the coordinate vector of $\mathbf{p}(x) \in P_2$ is given by $(\mathbf{p})_S = (1, 2, 3)$, then
 - (a) $\mathbf{p}(x) = 1 + 2x + 3x^2$
- **(b)** $\mathbf{p}(x) = 3 + 2x + 3x^2$ **(c)** $\mathbf{p}(x) = 5 + 3x + 3x^2$
- (d) None of the previous

- (5) If $T(x_1, x_2, x_3) = (x_1 + 2x_2, -x_3, 4x_1 x_3)$, then [T] is given by
- (a) $\begin{bmatrix} 1 & 0 & 4 \\ 2 & 0 & 0 \\ 0 & -1 & -1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & -1 \\ 4 & 0 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 0 \\ 4 & 0 & -1 \end{bmatrix}$ (d) None of the previous

- (6) The image of the vector $\begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix}$ if its rotated 60° about the z-axis is
 - (a) $\begin{bmatrix} 1\\\sqrt{3}\\-2 \end{bmatrix}$
- (b) $\begin{vmatrix} 1 \\ -\sqrt{3} \\ -2 \end{vmatrix}$ (c) $\begin{vmatrix} 2 \\ \sqrt{3} \\ -1 \end{vmatrix}$

- (d) None of the previous
- (7) If T_1 is the reflection operator about the line y = x in \mathbb{R}^2 and T_2 is the orthogonal projection on the y-axis in \mathbb{R}^2 , then $[T_1 \circ T_2]$ is

- (a) $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$
- (d) None of the previous

${\bf [III]} \ [7 \ Points]$

(i) Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 3 & -1 & 2 & -1 \\ 1 & -3 & 4 & -5 \end{bmatrix}$$
.

- (a) **Find** a basis for the solution space of $A\mathbf{x} = \mathbf{0}$.
- (b) Evaluate nullity(A) and $nullity(A^T)$.

- (ii) Let $S = \{(1, 1, 2, 3), (2, 3, 1, 0), (1, 3, -4, -9)\}.$
 - (a) **Find** a subset of S that forms a basis for the subspace W = Span(S).
 - (b) **Express** each vector not in the basis as a linear combination of the basis vectors.

[IV] [8 Points]

(i) Let
$$A = \begin{bmatrix} 3 & -2 & 5 \\ 1 & 0 & 7 \\ 0 & 0 & 2 \end{bmatrix}$$
.

- (a) \mathbf{Find} the eigenvalues and bases for the corresponding eigenspaces of A.
- (b) What are the eigenvalues of A^3 .
- (c) Is A^3 invertible? Justify your answer.

(ii) For $A = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$, **show** that $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector of A corresponding to the eigenvalue $\lambda = 2$.

[V] [5 Points]

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a matrix transformation with $[T] = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.

(a) **Prove** that T is one-to-one.

(b) Compute $T^{-1}\left(\left[\begin{array}{c}1\\2\\3\end{array}\right]\right)$

[**VI**] [6 *Points*]

(i) Let $\begin{bmatrix} a & 0 & b & | & 2 \\ a & a & 4 & | & 4 \\ 0 & a & 2 & | & b \end{bmatrix}$ be the augmented matrix for a linear system. **Find** the values for a and b for which the system has infinitely many solutions.

(ii) (BONUS)

(a) \mathbf{Find} the values of a for which the following system has a unique solution

$$6ax + 4y = 5$$
$$9x + 2ay = -2$$

(b) **Find** a unit vector **u** that is orthogonal to both (1,2,0) and (-1,0,2).