King Saud University Department of Mathematics
Second Semester 1436-1437 H

MATH 352 (Numerical Analysis)
Final Exam
Duration: 3 Hours

Student's Name	Student's ID	Group No.

Question No.	I	II	III	IV	V	VI	Total
Mark							

[I] Determine whether the following is True or False. Justify your answer.
(1) The Bisection method generates a sequence $\left\{p_{n}\right\}$ approximating p with rate of convergence $O\left(2^{-n}\right)$. (
(2) If the Composite Midpoint Rule is used to compute $\int_{0}^{2} 2 x^{3}-9 \quad d x$ with an error of at most 0.5×10^{-4}, then the number of points should be used is 13 .
(4) The sequence $\mathbf{x}^{(k)}=\left(e^{1-k}, 2+\frac{3}{k}, \sin \left(\frac{1}{k}\right)\right)^{T}$ is convergent.
(5) The matrix $C=\left[\begin{array}{cc}2 & 5 \\ 0 & 0.3\end{array}\right]$ is convergent.
[II] Choose the correct answer.
(1) If the Modified Newton's Method is used to find the root of $f(x)=e^{2 x}-2 x-1$ with $p_{0}=1$, then p_{1} equals
(a) -0.6713
(b) 0.6565
(c) zero
(d) None of the previous
(2) If $f(1.2)=1.6402, f(1.3)=1.7047$ and $f(1.4)=1.7127$, then the Forward-Difference formula to determine $f^{\prime}(1.3)$ gives
(a) $f^{\prime}(1.3)=0.08$
(b) $f^{\prime}(1.3)=0.645$
(c) $f^{\prime}(1.3)=0.725$
(d) None of the previous
(3) If $\frac{1}{2}$ is approximated by a third Lagrange Polynomial for $f(x)=2^{x}$ through the points $-2,0,2,4$, then the approximate value is
(a) 0.7656
(b) 0.4909
(c) 0.4417
(d) None of the previous
(4) If Gaussian elimination with scaled partial pivoting is used in solving the system

$$
\begin{aligned}
3.03 x_{1}-12.1 x_{2}+14 x_{3} & =-119 \\
-3.03 x_{1}+12.1 x_{2}-7 x_{3} & =120 \\
6.11 x_{1}-14.2 x_{2}+21 x_{3} & =-139
\end{aligned}
$$

then the first row interchange needed is
(a) $R_{1} \longleftrightarrow R_{2}$
(b) $R_{1} \longleftrightarrow R_{3}$
(c) $R_{2} \longleftrightarrow R_{3}$
(d) None of the previous
(5) If $B=\left[\begin{array}{ccc}5 & 1 & 3 \\ 0 & -1 & 0 \\ 0 & 1 & 2\end{array}\right]$, then $\rho(B)$ equals
(a) 1
(b) 2
(c) 5
(d) None of the previous
(6) If $M=\left[\begin{array}{ll}5 & 1 \\ 0 & 2\end{array}\right]$, then $\|M\|_{2}$ equals
(a) 6
(b) $15+\sqrt{125}$
(c) 26
(d) None of the previous
(a) Approximate $\int_{8.1}^{8.9} x \ln (x) \quad d x$ using the Composite Simpson Rule with $h=0.2$.
(b) Find a bound for the error term of the approximation in (a).
$[\mathbf{I V}]$ Let $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 2 & 5 & -4 \\ -3 & -4 & 14\end{array}\right]$.
[6 Points]
(a) Show that A is positive definite.
(b) Find the $L U$ factorization of A where L is a lower triangular matrix with ones on its diagonal and U is an upper triangular matrix.
(c) Use the $L U$ factorization in (b) to solve the system $A \mathbf{x}=\left[\begin{array}{l}4 \\ 6 \\ 8\end{array}\right]$

$$
\begin{aligned}
4 x_{1}-x_{2}-x_{3} & =3 \\
-2 x_{1}+6 x_{2}+x_{3} & =9 \\
-x_{1}+x_{2}+7 x_{3} & =-6
\end{aligned}
$$

(a) Show that if the Gauss-Seidel method is applied to solve the system, it gives a sequence of vectors that converges to the unique solution of the system for any choice of $\mathbf{x}^{(\mathbf{0})}$.
(b) Find the second iteration $\mathbf{x}^{(\mathbf{2})}$ of the Gauss-Seidel method to approximate the solution of the system using $\mathbf{x}^{(\mathbf{0})}=\mathbf{0}$.
(c) Compute $\left\|\mathbf{x}^{(\mathbf{2})}-\mathbf{x}^{(\mathbf{1})}\right\|_{2}$.
[VI] Let $A=\left[\begin{array}{cc}0.03 & 58.9 \\ 5.31 & -6.10\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}59.2 \\ 47.0\end{array}\right]$.
(a) Use Gaussian elimination with partial pivoting and 3-digit chopping arithmetic to approximate the solution of the system $A \mathbf{x}=\mathbf{b}$.
(b) Compute the residual vector $\mathbf{r}=\mathbf{b}-A \widetilde{\mathbf{x}}$, where $\widetilde{\mathbf{x}}$ is the approximation in (a).
(c) Use one iteration of the iterative refinement technique to improve $\widetilde{\mathbf{x}}$.
(d) Is A well-conditioned? Justify your answer.

