Solution of the Final Examination Math 244 Semester I 1439-1440

Question 1 :

1. $A B+A C-D=0 \Longleftrightarrow A(B+C)=D \Rightarrow|A||B+C|=|D|$.

$$
B+C=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 1 \\
0 & 0 & 3
\end{array}\right) \text {, then }|B+C|=-3 \text { and }|A|=-2
$$

2. $R S+R-2 I=0 \Longleftrightarrow R(S+I)=2 I$. Then

$$
R^{-1}=\frac{1}{2}(S+I)=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 2 & 2 \\
0 & 1 & 3
\end{array}\right)
$$

3. $a-b-2 c-3 d=0 \Longleftrightarrow a=b+2 c+3 d$. The matrices in W are in the form

$$
\left(\begin{array}{cc}
b+2 c+3 d & b \\
c & d
\end{array}\right)=b\left(\begin{array}{cc}
1 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{cc}
2 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right) .
$$

Then $\left\{\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}2 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)\right\}$ is a basis of the vector subspace W.

Question 2 :

The extended matrix of the system is: $\left[\begin{array}{ccc|c}1 & m & 2 & 3 \\ 4 & 6+m & -m & 13-m \\ 1 & 2(m-1) & m+4 & m+2\end{array}\right]$.
The matrix $\left[\begin{array}{ccc|c}1 & m & 2 & 3 \\ 0 & m-2 & m+2 & m-1 \\ 0 & 0 & 2(m-1) & m-1\end{array}\right]$ is row equivalent to the extended matrix of the system.
a) If $m \neq 1$ and $m \neq 2$ the system has a unique solution.
b) If $m=1$ the system has infinite solutions.
c) If $m=2$ the system has no solution.

Question 3 :

1. If $u_{1}-2 u_{2}+3 u_{6}=5 u_{3}+7 u_{4}-6 u_{5}$, then $u_{1}-2 u_{2}-5 u_{3}-7 u_{4}+6 u_{5}+3 u_{6}=0$. This is a linear combination of the vectors $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}$ which are linearly independent. This is impossible. Then $u_{1}-2 u_{2}+3 u_{6} \neq 5 u_{3}+7 u_{4}-6 u_{5}$.
2. (a) The standard matrix of T is $\left(\begin{array}{cccc}1 & -2 & 1 & 3 \\ 2 & -3 & 0 & 2 \\ -1 & 0 & 3 & 5\end{array}\right)$.
(b) The reduced echelon form of to the matrix of T is $\left(\begin{array}{cccc}1 & 0 & -3 & -5 \\ 0 & 1 & -2 & -4 \\ 0 & 0 & 0 & 0\end{array}\right)$. Then $\{(3,2,1,0),(5,4,0,1)\}$ is a basis for kernel T.
(c) Using the reduced echelon form of to the matrix of T we deduce that $\{(1,2,-1),(2,3,0)\}$ is a basis for Image T.

Question 4 :

1. ${ }_{B} P_{C}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right) \cdot[v]_{B}={ }_{B} P_{C}[v]_{C}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
2. $[T(w)]_{B}=[T]_{B}[w]_{B}=\left(\begin{array}{c}1 \\ -3 \\ -2\end{array}\right)$.
3. $T\left(u_{1}\right)=u_{1}+u_{2}+2 u_{3}=a u_{1}-\frac{b}{5} u_{2}+c u_{3}$. Then $a=1, b=-5, c=2$.

Question 5 :

1. $u_{1}=\frac{1}{\sqrt{2}}(1,1,0),\left\langle v_{2}, u_{1}\right\rangle=\sqrt{2}$. Then $u_{2}=(0,0,1)$.
2. (a) $\|u+v\|^{2}=11$.
(b) $\langle u, v\rangle=0$, then $\cos \theta=0$ and $\theta=\frac{\pi}{2}$.

Question 6 :

1. The eigenvalues of B are $1,2 . B$ is diagonalizable. $D=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$, $P=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ and $B=P D P^{-1}$. Then $B^{10}=P D^{10} P^{-1}=\left(\begin{array}{cc}1 & 2^{11}-2 \\ 0 & 2^{10}\end{array}\right)$.
2. Let $A=\left(\begin{array}{ccc}1 & -1 & 3 \\ 0 & 1 & 0 \\ 0 & 3 & -2\end{array}\right)$.
(a) The characteristic polynomial of A is $q_{A}(\lambda)=(1-\lambda)^{2}(2+\lambda)$.
(b) The eigenvalues of A are 1 and -2 .

The eigenspace E_{1} is generated by the vector $(1,0,0)$ and the eigenspace E_{-2} is generated by the vector $(1,0,-1)$.
(c) A is not diagonalizable since $\operatorname{dim}\left(E_{1}\right)=1$ and the algebraic multiplicity of 1 is 2 .

