Question 1 :

1.
$$AB + AC - D = 0 \iff A(B + C) = D \Rightarrow |A| |B + C| = |D|$$

 $B + C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 3 \end{pmatrix}$, then $|B + C| = -3$ and $|A| = -2$.

2.
$$RS + R - 2I = 0 \iff R(S + I) = 2I$$
. Then
 $R^{-1} = \frac{1}{2}(S + I) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 2 \\ 0 & 1 & 3 \end{pmatrix}$.

3.
$$a - b - 2c - 3d = 0 \iff a = b + 2c + 3d$$
. The matrices in W are in the form
 $\begin{pmatrix} b + 2c + 3d & b \\ c & d \end{pmatrix} = b \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$.
Then $\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \}$ is a basis of the vector subspace W .

Question 2 :

The extended matrix of the system is: $\begin{bmatrix} 1 & m & 2 & | & 3 \\ 4 & 6+m & -m & | & 13-m \\ 1 & 2(m-1) & m+4 & | & m+2 \end{bmatrix}.$ The matrix $\begin{bmatrix} 1 & m & 2 & | & 3 \\ 0 & m-2 & m+2 & | & 3 \\ 0 & 0 & 2(m-1) & | & m-1 \end{bmatrix}$ is row equivalent to the extended matrix of the system trix of the system.

- a) If $m \neq 1$ and $m \neq 2$ the system has a unique solution.
- b) If m = 1 the system has infinite solutions.
- c) If m = 2 the system has no solution.

Question 3 :

- 1. If $u_1 2u_2 + 3u_6 = 5u_3 + 7u_4 6u_5$, then $u_1 - 2u_2 - 5u_3 - 7u_4 + 6u_5 + 3u_6 = 0$. This is a linear combination of the vectors $u_1, u_2, u_3, u_4, u_5, u_6$ which are linearly independent. This is impossible. Then $u_1 - 2u_2 + 3u_6 \neq 5u_3 + 7u_4 - 6u_5$
- 2. (a) The standard matrix of T is $\begin{pmatrix} 1 & -2 & 1 & 3 \\ 2 & -3 & 0 & 2 \\ -1 & 0 & 3 & 5 \end{pmatrix}$.
 - (b) The reduced echelon form of to the matrix of T is $\begin{pmatrix} 1 & 0 & -3 & -5 \\ 0 & 1 & -2 & -4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Then $\{(3, 2, 1, 0), (5, 4, 0, 1)\}$ is a basis for kernel T.
 - (c) Using the reduced echelon form of to the matrix of T we deduce that $\{(1, 2, -1), (2, 3, 0)\}$ is a basis for Image T.

Question 4 :

1.
$$_{B}P_{C} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$
. $[v]_{B} = _{B}P_{C}[v]_{C} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
2. $[T(w)]_{B} = [T]_{B}[w]_{B} = \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}$.
3. $T(u_{1}) = u_{1} + u_{2} + 2u_{3} = au_{1} - \frac{b}{5}u_{2} + cu_{3}$. Then $a = 1, b = -5, c = 2$.

Question 5 :

1.
$$u_1 = \frac{1}{\sqrt{2}}(1, 1, 0), \langle v_2, u_1 \rangle = \sqrt{2}$$
. Then $u_2 = (0, 0, 1)$.
2. (a) $||u + v||^2 = 11$.

(b)
$$\langle u, v \rangle = 0$$
, then $\cos \theta = 0$ and $\theta = \frac{\pi}{2}$

Question 6 :

- 1. The eigenvalues of *B* are 1, 2. *B* is diagonalizable. $D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $P = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $B = PDP^{-1}$. Then $B^{10} = PD^{10}P^{-1} = \begin{pmatrix} 1 & 2^{11} - 2 \\ 0 & 2^{10} \end{pmatrix}$. 2. Let $A = \begin{pmatrix} 1 & -1 & 3 \\ 0 & 1 & 0 \\ 0 & 3 & -2 \end{pmatrix}$.
 - (a) The characteristic polynomial of A is $q_A(\lambda) = (1 \lambda)^2 (2 + \lambda)$.
 - (b) The eigenvalues of A are 1 and -2. The eigenspace E_1 is generated by the vector (1, 0, 0)and the eigenspace E_{-2} is generated by the vector (1, 0, -1).
 - (c) A is not diagonalizable since $\dim(E_1) = 1$ and the algebraic multiplicity of 1 is 2.