King Saud University, Department of Mathematics Math 280 (Real Analysis) Final Exam 31/05/2022

Question 1.[2+2+2]

- (a) Show that for every $x \in \mathbb{R}$, x > 0 there is a natural number n such that $0 < \frac{1}{n} < x$.
- (b) Find, if there exist, the supremum, the infimum, the maximum and the minimum of the following sets. $A = \left\{ \frac{1}{2n-1} : n \in \mathbb{N}^+ \right\}$
- (c) Determine the interior, closer and the boundary of $(2,3] \cup (4,5)$.

Question 2.[3+3]

- (a) Show that "If a sequence a_n is converges, then a_n is bounded".
- (b) If a_n a sequence such that $a_n \ge 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = a$, prove that $\lim_{n \to \infty} \sqrt{a_n} = \sqrt{a}$. Question 3.[3+3]
- (a) If the series $\sum_{n=1}^{\infty} |a_n|$ converges, **prove that** the series $\sum_{n=1}^{\infty} a_n$ is converges.
- (b) If $\sum_{n=1}^{\infty} a_n$ with $a_n > 0$ is convergent, and if $b_n = \frac{a_1 + a_2 + a_3 + \dots + a_n}{n}$ for $n \in \mathbb{N}$, then show that $\sum_{n=1}^{\infty} b_n$ is always divergent. Question 4.[6+3]
- (a) Show whether each of the following statements is true or false, and explain or give prove for the false one. 1- The function f(x) = 1/x is not uniformly continuous on [1/2, 3/2].
 2- The function f(x) = e^{-x} is not uniformly continuous on [a, ∞).
 3- The function f(x) = √x is not uniformly continuous on [0,∞).
- (b) Let f be defined in a neighborhood I of x_0 . Prove that if f is differentiable at x_0 , then f is continuous at x_0 .

Question 5.[4+2] Let $f : [a, b] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 1, & x \in \mathbb{Q} \cap [a, b] \\ 0, & x \notin \mathbb{Q} \cap [a, b] \end{cases}$

- (i) Choose uniform partition P_n for the interval [a, b] and calculate U(f, P) and L(f, P)
- (ii) Prove that $f \notin \mathcal{R}[a, b]$

Question 6.[3+4]

(a) Consider the sequence of functions $f_n(x) = x^n$. Show that $f_n(x) = x^n$ uniform convergence on any interval $[0, \alpha]$, for $0 < \alpha < 1$.

(b) Use M-Test to show the uniform convergence of the series $\sum_{n=1}^{\infty} \frac{\sin nx}{n^p}$ for p > 1.