King Saud University, Department of Mathematics

Math 280 (Real Analysis)
Final Exam 31/05/2022

Question 1. $[2+2+2]$

(a) Show that for every $x \in \mathbb{R}, x>0$ there is a natural number n such that $0<\frac{1}{n}<x$.
(b) Find, if there exist, the supremum, the infimum, the maximum and the minimum of the following sets.

$$
A=\left\{\frac{1}{2 n-1}: n \in \mathbb{N}^{+}\right\}
$$

(c) Determine the interior, closer and the boundary of $(2,3] \cup(4,5)$.

Question 2. $[3+3]$
(a) Show that "If a sequence a_{n} is converges, then a_{n} is bounded".
(b) If a_{n} a sequence such that $a_{n} \geq 0$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} a_{n}=a$, prove that $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\sqrt{a}$.

Question 3. $[3+3]$

(a) If the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, prove that the series $\sum_{n=1}^{\infty} a_{n}$ is converges.
(b) If $\sum_{n=1}^{\infty} a_{n}$ with $a_{n}>0$ is convergent, and if $b_{n}=\frac{a_{1}+a_{2}+a_{3}+\cdots+a_{n}}{n}$ for $n \in \mathbb{N}$, then show that $\sum_{n=1}^{\infty} b_{n}$ is always divergent.

Question 4. $[6+3]$

(a) Show whether each of the following statements is true or false, and explain or give prove for the false one. 1- The function $f(x)=\frac{1}{x}$ is not uniformly continuous on $\left[\frac{1}{2}, \frac{3}{2}\right]$.
2- The function $f(x)=e^{-x}$ is not uniformly continuous on $[a, \infty)$.
3- The function $f(x)=\sqrt{x}$ is not uniformly continuous on $[0, \infty)$.
(b) Let f be defined in a neighborhood I of x_{0}. Prove that if f is differentiable at x_{0}, then f is continuous at x_{0}.
Question 5. [4+2] Let $f:[a, b] \rightarrow \mathbb{R}$ be defined by $f(x)= \begin{cases}1, & x \in \mathbb{Q} \cap[a, b] \\ 0, & x \notin \mathbb{Q} \cap[a, b]\end{cases}$
(i) Choose uniform partition P_{n} for the interval $[a, b]$ and calculate $U(f, P)$ and $L(f, P)$
(ii) Prove that $f \notin \mathcal{R}[a, b]$

Question 6. $[3+4]$
(a) Consider the sequence of functions $f_{n}(x)=x^{n}$. Show that $f_{n}(x)=x^{n}$ uniform convergence on any interval $[0, \alpha]$, for $0<\alpha<1$.
(b) Use M-Test to show the uniform convergence of the series $\sum_{n=1}^{\infty} \frac{\sin n x}{n^{p}}$ for $p>1$.

