

College of Science. Department of Statistics & Operations Research

كلية العلوم قسم الإحصاء وبحوث العمليات

Final Exam
Academic Year 1443-1444 Hijri- Third Semester

	یان Exam Information	معلومات الامتد	
Course name	Biostatistic	cs (A)	اسم المقرر
Course Code	Stat 10	9	رمز المقرر
Exam Date	2023-06-11	1444-11-22	تاريخ الامتحان
Exam Time	01:00 H	PM	وقت الامتحان
Exam Duration	2 hours	ساعتان	مدة الامتحان
Classroom No.			رقم قاعة الاختبار
Instructor Name			اسم استاذ المقرر
	Student Information 4	معلومات الطالب	
Student's Name			اسم الطالب
ID number			الرقم الجامعي
Section No.			رقم الشعبة
Serial Number			الرقم التسلسلي
General Instructions:			تعليمات عامة:
 Do not copy answers different questions form 	from your neighbors. They have s.	قائك، لديهم نماذج أسئلة مختلفة.	 لا تنسخ الإجابات من أصداً
• Choose the nearest num	ber to your answer.		 اختر أقرب رقم لإجابتك.
• Do not use pencils or re-	d pens.	أو الأقلام الحمراء.	 لا تستخدم أقلام الرصاص
• Correction will be from	cover page only .	ن ينظر لورقة الأسئلة من الداخل.	 يجب نقل الاجابات بدقة ول
 For each question, put th answer in the following ta 	e code (Capital Letters) of the correct ble beneath the guestion number	حروف الكبيرة) للإجابة الصحيحة في مؤال.	 لكل سؤال، ضع رمز (ال الجدول التالي أسفل رقم الس

This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Questions	Points	Final Score
1	Confident interval about population parameter	1,5,6-9,14,18-21, 24, 25, 30,31,37	16	
2	Testing hypothesis about population parameter	2-4,10-13,15-17, 22,23 26-29, 32-36,38-40	24	40

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40

Choose the right answer for each question:

Questions(1-5):

A medical student claims that the time of travel from hospital to the University by bus has an average of μ is greater than 27minutes. A sample of six ride-times (n=6) is taken from normal population to test the hypothesis of interest that produced $\overline{X} = 27.5$ minutes and standard deviation s = 2.43 minutes, at α = 0.05

1) The point estimate of the population mean u is

	L			•					
A)	27	<mark>B)</mark>	27.5	C)	2.43	D)	0.5		
2)	The hypotheses a	are							
A)	$H_0: \mu = 27 \ vs \ H_A:$	$\mu \neq 2$.7	B)	$H_0: \mu = 27 \text{ vs } H_A: \mu$	< 27			
C)	C) $H_0: \mu < 27 \text{ vs } H_A: \mu = 27$ D) $H_0: \mu \le 27 \text{ vs } H_A: \mu > 27$								
3)	3) The value of the test statistic for testing this hypothesis is:								

A)	Z=0.504	B)	Z = 0.460	<mark>C)</mark>	T = 0.504	D)	T = -0.504
4)	The decision is						

A)	Reject H ₀	B)	Accept H ₀

5) The 99% upper limit of the population mean μ is

					•		
A)	30.84	<mark>B)</mark>	31.5	C)	23.5	D)	30.05

Questions(6 - 12):

In a study of serum chemistry in healthy people, the following data were obtained for the serum concentration of uric acid in men and women aged 18-55 years.

Serum uric acid [mmol/I]									
Men Women									
Sample Size	$n_{M} = 53$	$n_W = 42$							
Sample Mean	$\bar{X}_{M} = 0.354$	$\bar{X}_{W} = 0.263$							

Suppose that the population standard deviations of uric acid are 0.058 and 0.051 for men and women respectively. Let μ_M represents the mean of serum concentration of uric acid in Men and μ_{W} represents the the mean of serum concentration of uric acid in Women.

6) The good point estimate for $\mu_M - \mu_W$ is

A) 0.091 B) 0.354 C) 0.263 D) 0.007		01		• • • • •				
	<mark>A)</mark>	0.091	B)	0.354	C)	0.263	D)	0.007

7) The margin of error of 95% confident interval of $\mu_M - \mu_W$ is

<mark>A</mark>)	$Z_{0.975} \sqrt{\frac{0.058^2}{53} + \frac{0.051^2}{42}}$	B)	$t_{0.975} \sqrt{\frac{0.058^2}{53} + \frac{0.051^2}{42}}$	C)	$Z_{0.975} \sqrt{\frac{0.058}{53} + \frac{0.051}{42}}$	D)	$t_{0.975} \sqrt{\frac{0.058}{53} + \frac{0.051}{42}}$
------------------	--	----	--	----	--	----	--

8) The 95% confidence interval of $\mu_M - \mu_W$ is

A)	(0.0512,0.1008)	B)	(0.0032,0.1852)	C)	(0.0691,0.1129)	D)	(0.0712,0.1208)
----	-----------------	----	-----------------	----	-----------------	----	-----------------

9) From the 95% confidence interval of $\mu_M - \mu_W$ we may conclude

		11	
	There is a difference between means		There is no difference between means of uric
<mark>A)</mark>	of uric acid between Men and Women	B)	acid between Men and Women
	$\mu_M eq \mu_W$		$\boldsymbol{\mu_M} = \boldsymbol{\mu_W}$

1 | FINAL EXAM STAT 109(A)

> Test $H_0: \mu_M - \mu_F \le 0$ vs $H_A: \mu_M - \mu_F > 0$ at level of significance of 0.025.

10) The value of the	e test	statistic is:				
<mark>A)</mark>	Z = 8.126	B)	T = 8.126	C)	T =1.894	D)	Z=1.894

11) The rejection region of the test is

A) $(-\infty, -1.96)$ B) $(1.96, \infty)$ C) $(-\infty, 1.96)$ D) $(-1.96, 1.96)$

12) The decision is		
<mark>A)</mark>	Reject H ₀	B)	Accept H ₀

Questions (13 - 19) :

An experiment was conducted to compare time duration of stay in a hospital with two types of complications (I) and (II). The results are given in the table below

	Sample Statistics	for time duration
	Ι	II
Mean	12 days	7 days
Standard deviation	8 days	5 days
Sample size	9	16

Assuming both populations are normally distributed with unknown <u>equal variances</u>, test the equality of population means at 0.01 level of significance.

13) The	alternative	hypothesis i	
13/110		II V PULICSIS I	э.

A)	II <u>-</u>	D)		(\mathbf{C})	11		II
A)	$H_A: \mu_1 \neq \mu_2$	В)	$H_A: \mu_1 > \mu_2$	C)	$H_A: \mu_1 \leq \mu_2$	D)	$H_A: \mu_1 = \mu_2$

14) The pooled estimate of the common variance (S_p^2) is:

A)	6.953	<mark>B)</mark>	38.565	C)	42.435	D)	6.043

15) The appropriate test statistic is:

A)	$Z = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	<mark>B)</mark>	$T = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_P^2}{n_1} + \frac{s_P^2}{n_2}}}$	C)	$T = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	D)	$Z = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_P^2}{n_1} + \frac{s_P^2}{n_2}}}$
----	--	-----------------	--	----	--	----	--

16) The value of test statistic is:

$\begin{bmatrix} A \\ A \end{bmatrix} = \begin{bmatrix} 1.952 \\ B \end{bmatrix} = \begin{bmatrix} 1.098 \\ 1.098 \\ C \end{bmatrix} = \begin{bmatrix} 4.302 \\ 4.302 \\ D \end{bmatrix} = \begin{bmatrix} 4.807 \\ 4.807 \\ C \end{bmatrix}$

17) The decision is

A) | Reject H_0 | B) | Accept H_0

18) The 99% confidence interval for the difference in mean times duration of stay in a hospital for two types of complications $\mu_1 - \mu_2$ is:

A)	(1	1.923, 8.077)	<mark>B)</mark>	(-2.263, 12.263)	C)	(-1.663 ,11.6	53)	D)	(-3.267, 13	.267)
19) The width of the interval is										
A	A)	6.154	B)	10	C)	14.53	D)		16.534	

Questions (20 – 23):

The IQ test was administered to 5 girls before and after they were trained. The results are given as follows:

Candidates	1	2	3	4	5
IQ before training(X)	110	120	123	132	125
IQ after training(Y)	120	118	125	136	121
$\mathbf{D} = \mathbf{X} - \mathbf{Y}$	-10	2	-2	- 4	4

20) The value of sample mean \overline{D} , and sample standard deviation S_D respectively are

	A)	-2 and 3.28	<mark>B)</mark>	- 2 and 5.477	C)	2 and 5.477	D)	4.4 and 30	
--	----	-------------	-----------------	---------------	----	-------------	----	------------	--

21) The 90% confidence interval for μ_D is

$[\mathbf{R}] = \begin{bmatrix} 0.022, 0.022 \end{bmatrix} \begin{bmatrix} 0 \\ 0.022 \end{bmatrix} \begin{bmatrix} 0.022 \\ 0.022 \end{bmatrix} \begin{bmatrix} 0 \\ 0.022 $
--

> At $\alpha = 0.10$. Test $H_0: \mu_D = 0$ against $H_A: \mu_D \neq 0$

22) The value of test statistic

A)	0.817	B)	1.796	C)	- 1.363	D)	- 0.817			
2	23) The decision is									
A)	Reject H ₀	<mark>B)</mark>	Accept H ₀							

Questions (24 – 29):

A commonly prescribed drug for relieving nervous tension (التوتر العصبي) is believed to be only 80% effective. Experimental results with a new drug administered to a random sample of 100 adults who were suffering from nervous tension show that 60 received relief. Is this sufficient evidence to conclude that the nervous tension of the new drug is less than 80% the one commonly prescribed at the 10% level of significance?

24) The point estimate of P is

<mark>A)</mark>	0.6	B)	0.8	C)	0.1	D)	0.05				
25) The standard error of \hat{p} is											
<mark>A)</mark>	0.0489	B)	0.0024	C)	0.07	D)	0.60				
26) The alternative hypothesis (H_A) is											
A)	p ≠ 0.8	B)	p > 0.8	C)	p = 0.8	D)	p < 0.8				
27) The value of the test statistic is											
<mark>A)</mark>	- 5	B)	5	C)	4	D)	- 4				
28) The rejection region of the null hypothesis (H_0) is											
A)	Z > 1.285	B)	T > 1.645	C)	Z < - 1.645	D)	Z < - 1.285				
29) The decision	is									
A)	Reject H ₀	B)	Accept H ₀								

Questions(30 - 36) :

Two types of medication for high blood pressure are being tested to determine if there is a difference in the proportions of adult patient reactions ,the results given in the following table

	Sample size Number of adult patient with reactions (X)									
	medication A		200		20					
	medication B		200		12					
3	0) The point estima	ite o	f the difference b	oetwee	n two proportion P	A - PI	B is			
A)	0.04	B)	0.1	C)	0.06	D)	1			
3	1) The upper limit	of t	he 99% confiden	nt inter	val of PA -PB is					
A)	0.1097	B)	-0.0297	C)	0.0436	D)	0.2164			
 ➤ Test H₀: P_A - P_B = 0 vs H_A: P_A - P_B≠0. Assume equal proportion with level of significant 0.01. Then, 32) The value of peoled proportion (P̄) is 										
3	2) The value of poo	led	proportion (P) is	5		<u>г г</u>				
A)	32	<mark>B)</mark>	0.08	C)	0.02	D)	0.16			
3	3) The value of the	test	statistic is							
A)	1.4744	B)	0.1	C)	1.4142	D)	3.8042			
3	4) The critical valu	es a	re							
A)	1.96 and -1.96	B)	1.645	C)	2.575 and -2.575	D)	1.725			
3	5) The acceptance	regi	on of the H_0 is							
A)	(-1.645, 1.645)	<mark>B)</mark>	(-2.575, 2.575)	C)	(−∞, −1.645) ∪ (1.645, ∞)	D)	(−∞, −2.575) ∪ (2.575	;,∞		
3	6) The decision is									
A)	Reject H ₀	<mark>B)</mark>	Accept H ₀							
Ques 2	stions(37 - 40) : 7) If the distributio	-		lo :			derive of the			
3	nonulation is kn	own	which type of c	ipie is i onfidei	normal and the stance interval should	nuaro be co	a deviation of the			
A)	z-interval	B)	x-interval	C)	t-interval	D)	c-interval			
3	δ) II the P-value =	U.U($\Delta c = t H_{0}$	$e \text{ of } \alpha =$	• 0.05, then your d	ecisio	n 18			
<u>л)</u>		.								
3	9) The level of sign	ifica	ince is			•	·			
(A)	The probability of	rejec	ting H_A .	B)	The probability of	t accep	pting H ₀ .			
<mark>C)</mark>	The probability of	так	ing a Type Terror	. D)	The probability of	такі	ng a Type II erfor.			
4	0) An appropriate	95% 	o confidence inte	rval fo	r μ has been calcul	ated a	as (-0.73, 1.92) based on			
	$n_1 = 15, n_2 = 1$	7 ot	oservations from	two in	dependent populat	tions v	with a normal			
	distribution. The	e nyj ne -	potheses of intere	est are	H ₀ : $\mu_1 = \mu_2$ versu	IS HA:	$\mu_1 \neq \mu_2$.			
	We should reject H	uuid [o at	the $\alpha = 0.05$		We should not raise	rt Hale	at the $\alpha = 0.05$ level			
A)	level of significance	e.	uic u – 0.05	<mark>B)</mark>	of significance.	λι I I() č				
L	ie ver er significale			1	or significance.					

Standard Normal Table

Areas Under the Standard Normal Curve

Z	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	-0.00	Z
-3.50	0.00017	0.00017	0.00018	0.00019	0.00019	0.00020	0.00021	0.00022	0.00022	0.00023	-3.50
-3.40	0.00024	0.00025	0.00026	0.00027	0.00028	0.00029	0.00030	0.00031	0.00032	0.00034	-3.40
-3.30	0.00035	0.00036	0.00038	0.00039	0.00040	0.00042	0.00043	0.00045	0.00047	0.00048	-3.30
-3.20	0.00050	0.00052	0.00054	0.00056	0.00058	0.00060	0.00062	0.00064	0.00066	0.00069	-3.20
-3.10	0.00071	0.00074	0.00076	0.00079	0.00082	0.00084	0.00087	0.00090	0.00094	0.00097	-3.10
-3.00	0.00100	0.00104	0.00107	0.00111	0.00114	0.00118	0.00122	0.00126	0.00131	0.00135	-3.00
-2.90	0.00139	0.00144	0.00149	0.00154	0.00159	0.00164	0.00169	0.00175	0.00181	0.00187	-2.90
-2.80	0.00193	0.00199	0.00205	0.00212	0.00219	0.00226	0.00233	0.00240	0.00248	0.00256	-2.80
-2.70	0.00264	0.00272	0.00280	0.00289	0.00298	0.00307	0.00317	0.00326	0.00336	0.00347	-2.70
-2.60	0.00357	0.00368	0.00379	0.00391	0.00402	0.00415	0.00427	0.00440	0.00453	0.00466	-2.60
-2.50	0.00480	0.00494	0.00508	0.00523	0.00539	0.00554	0.00570	0.00587	0.00604	0.00621	-2.50
-2.40	0.00639	0.00657	0.00676	0.00695	0.00714	0.00734	0.00755	0.00776	0.00798	0.00820	-2.40
-2.30	0.00842	0.00866	0.00889	0.00914	0.00939	0.00964	0.00990	0.01017	0.01044	0.01072	-2.30
-2.20	0.01101	0.01130	0.01160	0.01191	0.01222	0.01255	0.01287	0.01321	0.01355	0.01390	-2.20
-2.10	0.01426	0.01463	0.01500	0.01539	0.01578	0.01618	0.01659	0.01700	0.01743	0.01786	-2.10
-2.00	0.01831	0.01876	0.01923	0.01970	0.02018	0.02068	0.02118	0.02169	0.02222	0.02275	-2.00
-1.90	0.02330	0.02385	0.02442	0.02500	0.02559	0.02619	0.02680	0.02743	0.02807	0.02872	-1.90
-1.80	0.02938	0.03005	0.03074	0.03144	0.03216	0.03288	0.03362	0.03438	0.03515	0.03593	-1.80
-1.70	0.03673	0.03754	0.03836	0.03920	0.04006	0.04093	0.04182	0.04272	0.04363	0.04457	-1.70
-1.60	0.04551	0.04648	0.04746	0.04846	0.04947	0.05050	0.05155	0.05262	0.05370	0.05480	-1.60
-1.50	0.05592	0.05705	0.05821	0.05938	0.06057	0.06178	0.06301	0.06426	0.06552	0.06681	-1.50
-1.40	0.06811	0.06944	0.07078	0.07215	0.07353	0.07493	0.07636	0.07780	0.07927	0.08076	-1.40
-1.30	0.08226	0.08379	0.08534	0.08691	0.08851	0.09012	0.09176	0.09342	0.09510	0.09680	-1.30
-1.20	0.09853	0.10027	0.10204	0.10383	0.10565	0.10749	0.10935	0.11123	0.11314	0.11507	-1.20
-1.10	0.11702	0.11900	0.12100	0.12302	0.12507	0.12714	0.12924	0.13136	0.13350	0.13567	-1.10
-1.00	0.13786	0.14007	0.14231	0.14457	0.14686	0.14917	0.15151	0.15386	0.15625	0.15866	-1.00
-0.90	0.16109	0.16354	0.16602	0.16853	0.17106	0.17361	0.17619	0.17879	0.18141	0.18406	-0.90
-0.80	0.18673	0.18943	0.19215	0.19489	0.19766	0.20045	0.20327	0.20611	0.20897	0.21186	-0.80
-0.70	0.21476	0.21770	0.22065	0.22363	0.22663	0.22965	0.23270	0.23576	0.23885	0.24196	-0.70
-0.60	0.24510	0.24825	0.25143	0.25463	0.25785	0.26109	0.26435	0.26763	0.27093	0.27425	-0.60
-0.50	0.27760	0.28096	0.28434	0.28774	0.29116	0.29460	0.29806	0.30153	0.30503	0.30854	-0.50
-0.40	0.31207	0.31561	0.31918	0.32276	0.32636	0.32997	0.33360	0.33724	0.3409	0.34458	-0.40
-0.30	0.34827	0.35197	0.35569	0.35942	0.36317	0.36693	0.37070	0.37448	0.37828	0.38209	-0.30
-0.20	0.38591	0.38974	0.39358	0.39743	0.40129	0.40517	0.40905	0.41294	0.41683	0.42074	-0.20
-0.10	0.42465	0.42858	0.43251	0.43644	0.44038	0.44433	0.44828	0.45224	0.45620	0.46017	-0.10
-0.00	0.46414	0.46812	0.47210	0.47608	0.48006	0.48405	0.48803	0.49202	0.49601	0.50000	-0.00

Standard Normal Table (continued) Areas Under the Standard Normal Curve

		1									· · · · · ·
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	Z
0.00	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586	0.00
0.10	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535	0.10
0.20	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409	0.20
0.30	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173	0.30
0.40	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793	0.40
0.50	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240	0.50
0.60	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490	0.60
0.70	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524	0.70
0.80	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327	0.80
0.90	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891	0.90
1.00	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214	1.00
1.10	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298	1.10
1.20	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147	1.20
1.30	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774	1.30
1.40	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189	1.40
1.50	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408	1.50
1.60	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449	1.60
1.70	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327	1.70
1.80	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062	1.80
1.90	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670	1.90
2.00	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169	2.00
2.10	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574	2.10
2.20	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899	2.20
2.30	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158	2.30
2.40	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361	2.40
2.50	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520	2.50
2.60	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643	2.60
2.70	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736	2.70
2.80	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807	2.80
2.90	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861	2.90
3.00	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.9990	3.00
3.10	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929	3.10
3.20	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950	3.20
3.30	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965	3.30
3.40	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976	3.40
3.50	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983	3.50

Critical Values of the t-distribution (t_{α})

					ιa
v=df	t _{0.90}	t _{0.95}	t _{0.975}	t _{0.99}	t _{0.995}
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
35	1.3062	1.6896	2.0301	2.4377	2.7238
40	1.3030	1.6840	2.0210	2.4230	2.7040
45	1.3006	1.6794	2.0141	2.4121	2.6896
50	1.2987	1.6759	2.0086	2.4033	2.6778
60	1.2958	1.6706	2.0003	2.3901	2.6603
70	1.2938	1.6669	1.9944	2.3808	2.6479
80	1.2922	1.6641	1.9901	2.3739	2.6387
90	1.2910	1.6620	1.9867	2.3685	2.6316
100	1.2901	1.0002	1.9840	2.3042	2.0259
120	1.2880	1.05//	1.9799	2.3578	2.01/4
140	1.28/0	1.0008	1.9//1	2.3533	2.0114
100	1.2869	1.0544	1.9749	2.3499	2.0009
180	1.2803	1.0534	1.9732	2.54/2	2.0034
200	1.2858	1.0525	1.9/19	2.3451	2.0006
80	1.282	1.645	1.960	2.326	2.576