King Saud University
Mathematics Department
First semester 1444
Math 280
Final Exam
Time: 3 hours

1. The first question. (7 marks)
(a) Let $A=\left\{1,1+\frac{1}{2}, 1+\frac{1}{2}+\frac{1}{3}, 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}, \ldots\right\}$ Find $\sup A$ and $\inf A$ if they exist.
(b) Let A be a non-empty subset of \mathbb{R}. For any b in \mathbb{R}, define $A+b=\{a+b: a \in A\}$. If A is bounded below, prove that $\inf (A+b)=\inf (A)+b$.
(c) If $0<b<1$, show that $\lim _{n \rightarrow \infty} n b^{n}=0$.
2. The second question. (9 marks)
(a) Let $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ be two series, and suppose that $a_{k}=b_{k}$ whenever $k>42$. Show that $\sum_{k=1}^{\infty} b_{k}$ converges if $\sum_{k=1}^{\infty} b_{k}$ converges.
(b) Decide whether the following series converge or diverge:
3. $\sum_{k=1}^{\infty} \frac{1}{k^{2}+k}$
4. $\sum_{k=1}^{\infty} \frac{3^{k}+4^{k}}{6^{k}}$
5. $\sum_{k=1}^{\infty} \frac{k}{2 k^{2}-1}$.
6. The third question. (12 marks)
(a) Use definition to show that $f(x)=\frac{1}{x}$ is uniformly continuous on $[2, \infty)$.
(b) Show that the function $f(x)=x^{2}$ is not uniformly continuous on \mathbb{R}.
(c) Use Mean Value Theorem to prove that

$$
|\cos x-\cos y| \leq|x-y| \text { for all } x, y \in \mathbb{R}
$$

(d) If the function f has an extremum on the open interval (a, b) at the point $c \in(a, b)$, and if f is differentiable at c, show that $f^{\prime}(c)=0$.
4. The fourth question. (12 marks)
(a) Consider the function $f(x)=\left\{\begin{array}{cc}x^{2} & x<1 \\ 3 x-2 & x \geq 1\end{array}\right.$ show that f is continuous but not differentiable at $x=1$.
(b) Use Taylor's theorem with $n=4$ to obtain a suitable approximation of the number e.
(c) Give an example of a bounded function which is not integrable. Justify your answer.
(d) Suppose that f is Riemann integrable on $[a, b]$, and let $F:[a, b] \rightarrow \mathbb{R}$ be defined by $F(x)=$ $\int_{a}^{x} f(t) d t$. Prove that if f is continuous at $c \in[a, b]$, then F is differentiable at c and $F^{\prime}(c)=f(c)$.

