Time: 3 hours

King Saud University College of Sciences Department of Mathematics Semester 452 / Final Exam / MATH-244 (Linear Algebra)

Max. Marks: 40

Name:	ID:	Section:	Signature:
Note: *Attempt all the fi	ve questions. Scientific ca above columns and give y	alculators are not allower your answer to Question	d. 1 on this page of the paper.
Question 1 [Marks: 10			
	atrix and $nullity(B) = 3$		
a) 2	b) 5	c) 3	d) 1
(ii) If C is a 3×3 m	atrix with $det(C) = 2$, t		
a) 1	b) 3	c) 2	d) 0
	llowing matrices canno		
a) [² ₃	$\begin{bmatrix} -1 \\ 0 \end{bmatrix} \qquad b) \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -3 \\ 0 \end{bmatrix}$ c) $\begin{bmatrix} 2 & 0 \\ -2 & 0 \\ 3 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad d) \begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 5 \\ 2 & 6 & 0 \end{bmatrix}$
(iv) If u and v are or	thogonal unit vectors in	an inner product space	ce, then $ v - \mathbf{u} $ equals:
a) 1	b) √2	c) 0	d) $\sqrt{3}$
(v) If $u = (1,-1,0)$,	v = (3,-1,2) and $w = (-2,-1,2)$,0,1) in Euclidean space	e \mathbb{R}^3 , then $\frac{\langle u,v\rangle}{\langle w,w\rangle}v$ equals:
			d) $\frac{4}{5}(1,-1,0)$
		*	space \mathbb{R}^n , then the angle θ
between v and v			
a) 45°	b) 90°	c) 180°	d) 0°
(vii) The set $\{(x, \frac{1}{\sqrt{6}},$	$\frac{-2}{\sqrt{6}}$), $(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0)$ } of vector	rs in the Euclidean spa	d) 0° ace \mathbb{R}^3 is (ortho)normal if x
equals:			
a) 0	b) $\frac{1}{\sqrt{6}}$	c) $\frac{-1}{\sqrt{6}}$	d) $\frac{1}{2}$
(viii) Consider the vec	tor space P_n of real polyn	omials of degree $\leq n$.	If the linear transformation
$T: P_2 \to P_1$ is g	iven by $T(a_0+a_1x+a_2x^2)$	$= a_0 + a_1 + a_2 x$, then k	ter(T) equals:
a) {0}	b) span{-	$1+x$ c) $span\{-$	$\{1,x\}$ d) P_2
(ix) Consider the basis	is $\{(1,2),(3,0)\}$ for the s	pace \mathbb{R}^2 . If the linear	transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$
is given by $T(1,2)$	(1,5) and $T(3,0) = (1,5)$	-4,6), then $T(7,8)$ equ	als:
a) (13,20	b) (-15,35)	c) (-3,11)	d) (0,26)
(x) If $A = \begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix}$, then	hen the eigenvalues of	A ⁴ are:	
a) 2, 16		c) 1, 16	d) 4, 16

Question 2 [Marks: 2+2+3]:

- (a) Given: the polynomial $p(x) = x^3 3x^2 4x + 13$ and the matrix $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2 \end{bmatrix}$. Compute p(A).

 (b) Show that $\begin{vmatrix} 1 & 2 & 2 \\ x+1 & 2x+1 & 2x+2 \\ x+1 & x+1 & 2x+1 \end{vmatrix}$ is constant, for all $x \in \mathbb{R}$.

 (c) Let A be $m \times n$ matrix and let B and C be linearly independent.
- (c) Let A be $m \times n$ matrix and let B and C be linearly independent vectors in \mathbb{R}^m . Suppose X_1 is a solution of $AX_1 = B$ and X_2 is a solution of $AX_2 = C$. Then, show that the vectors X_1 and X_2 are linearly independent in \mathbb{R}^n . Explain why $rank(A) \geq 2$.

Question 3 [Marks: 2+3+3]:

Consider the matrix
$$A = \begin{bmatrix} 1 & -1 & 0 & -1 \\ -1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 3 \\ 1 & 0 & 1 & 2 \end{bmatrix}$$
. Then:

- (a) Compute the RREF of A
- (b) Find a basis of the column space col(A) and a basis of the null space N(A).
- (c) Find rank(A) and nullity(A).

Question 4: [Marks: 3+2+3]

- (a) Consider the vector space P_2 of real polynomials of degree ≤ 2 equipped with the inner product: $\langle p(x), q(x) \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1)$ for all $p(x), q(x) \in P_2$ Explain why $\{1, x, x^2\}$ is not orthogonal. Apply the Gram-Schmidt process to transform the basis $\{1, x, x^2\}$ of P_2 to an orthogonal basis.
- (b) Let $S = \{u, v, w\}$ be any orthonormal subset of the above inner product space P_2 . Show that S is a basis for P_2 .
- (c) Consider the basis $\{v_1 = (2,2,1), v_2 = (2,1,0), v_3 = (1,0,0)\}$ for the vector space \mathbb{R}^3 . Let the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by: $T(v_1) = (3,-1)$, $T(v_2) = (6,2)$ and $T(v_3) = (4,3)$. Then find:

(i)
$$ker(T)$$
 (ii) $rank(T)$.

Question 5: [Marks: 3+4]

- (a) Let A, B and C be square matrices of size n, where C is invertible satisfying $B = C^{-1}AC$. If λ is an eigenvalue of A and X is its corresponding eigenvector, then find a nonzero vector $Y \in \mathbb{R}^n$ such that $BY = \lambda Y$.
- (b) Show that the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 2 & 1 \end{bmatrix}$ is diagonalizable and find an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix. ***/