$\begin{array}{c} \text{Math 280} \\ 3^{rd} \text{ semester 1444} \end{array}$

- 1. Question [2+2]
 - (a) Let A be a non-empty, lower bounded subset of \mathbb{R} and $\alpha \in \mathbb{R}$. Show that: $\alpha = \inf A$, if and only if, for every $\varepsilon > 0$ there exists $a \in A$ such that $\alpha \le a < \alpha + \varepsilon$.
 - (b) Prove that if $x_n \to x$, then there is a positive real number M such that

$$|x_n| \leq M$$
 for all $n \in \mathbb{N}$

- 2. Question [3+3+3+3]
 - (a) If $f: (-1,1) \to \mathbb{R}$ satisfies $|f(x)| \le 2|x|$, prove that f is continuous at x = 0.
 - (b) If $f, g: [a, b] \to \mathbb{R}$ are two continuous functions such that $f(a) < a^2$ and $f(b) > b^2$, prove that there exists $c \in (a, b)$ such that $f(c) = c^2$.
 - (c) Show that the function $f(x) = x^2$ is not uniformly continuous on \mathbb{R} .
 - (d) Show that the function $g(x) = \cos x$ is uniformly continuous on \mathbb{R} .
- 3. Question [2+2+3+3+3].
 - (a) Show that if a series $\sum a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$.
 - (b) Give an example of a convergent series which is not absolutely convergent.
 - (c) Test the following series for convergence:
 - 1. $\sum \frac{1}{(n+1)(n+2)}$ 2. $\sum \frac{n}{2^n}$ 3. $\sum n^n e^{-n}$
- 4. Question, [3+3+3]
 - (a) If the function f has an extremum on the open interval (a, b) at the point $c \in (a, b)$ and if f is differentiable at c, show that f'(c) = 0.
 - (b) If the function f satisfies $|f(x)| \le |x|^2$, for all $x \in [-1, 1]$, prove that f is differentiable at 0 and find f'(0).
 - (c) Consider the function defined by

$$f(x) = \begin{cases} x^2 & \text{if } x < 1, \\ 3x - 2 & \text{if } x \ge 1. \end{cases}$$

Show that f is continuous on \mathbb{R} , but not differentiable at x = 1.

- 5. Question[3+2]
 - (a) If f is continuous on [a, b], show that there exists a point c in (a, b) such that

$$\int_{a}^{b} f(x) dx = f(c) (b-a).$$

(b) Give an example of a function f such that $|f| \in \Re(a, b)$ and $f \notin \Re(a, b)$.