Math 280
$3^{r d}$ semester 1444

1. Question $[2+2]$
(a) Let A be a non-empty, lower bounded subset of \mathbb{R} and $\alpha \in \mathbb{R}$. Show that: $\alpha=\inf A$, if and only if, for every $\varepsilon>0$ there exists $a \in A$ such that $\alpha \leq a<\alpha+\varepsilon$.
(b) Prove that if $x_{n} \rightarrow x$, then there is a positive real number M such that

$$
\left|x_{n}\right| \leqslant M \quad \text { for all } \quad n \in \mathbb{N}
$$

2. Question $[3+3+3+3]$
(a) If $f:(-1,1) \rightarrow \mathbb{R}$ satisfies $|f(x)| \leq 2|x|$, prove that $f \quad$ is continuous at $\quad x=0$.
(b) If $f, \quad g:[a, b] \rightarrow \mathbb{R}$ are two continuous functions such that $f(a)<a^{2}$ and $f(b)>b^{2}$, prove that there exists $c \in(a, b)$ such that $f(c)=c^{2}$.
(c) Show that the function $f(x)=x^{2}$ is not uniformly continuous on \mathbb{R}.
(d) Show that the function $g(x)=\cos x$ is uniformly continuous on \mathbb{R}.
3. Question $[2+2+3+3+3]$.
(a) Show that if a series $\sum a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.
(b) Give an example of a convergent series which is not absolutely convergent.
(c) Test the following series for convergence:
4. $\sum \frac{1}{(n+1)(n+2)}$.
5. $\sum \frac{n}{2^{n}}$.
6. $\sum n^{n} e^{-n}$.
7. Question, $[3+3+3]$
(a) If the function f has an extremum on the open interval (a, b) at the point $c \in(a, b)$ and if f is differentiable at c, show that $f^{\prime}(c)=0$.
(b) If the function f satisfies $\quad|f(x)| \leq|x|^{2}, \quad$ for all $x \in[-1,1]$, prove that $\quad f \quad$ is differentiable at 0 and find $f^{\prime}(0)$.
(c) Consider the function defined by

$$
f(x)=\left\{\begin{array}{ccc}
x^{2} & \text { if } & x<1 \\
3 x-2 & \text { if } & x \geq 1
\end{array}\right.
$$

Show that f is continuous on \mathbb{R}, but not differentiable at $x=1$.
5. Question [3+2]
(a) If f is continuous on $[a, b]$, show that there exists a point c in (a, b) such that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

(b) Give an example of a function f such that $|f| \in \Re(a, b)$ and $f \notin \Re(a, b)$.

