King Saud University
College of Sciences
Department of Mathematics
MATH-244 (Linear Algebra); Final Exam; Semester 443
Max. Marks: 40

<u>Ivia</u>	x. Marks: 40			Time: 3 hours	
Name:		ID:	Section:	Signature:	
Note: A	ttempt all the five qu	estions. Scientifi	c calculators are no	t allowed!	
	n 1 [Marks:10 ×1]:				
	oose the correct answ	ver:			
(i)	If the matrix 2	$\begin{bmatrix} 5 & -4 \\ 3 & h \end{bmatrix}$ is non-in	vertible, then h is equa	al to:	
(60)	a) 5	b) -3	c) -5	d) 3.	
(ii)	which of the follo	wing matrices can	not be a transition mat	rix?	
	a) $\begin{bmatrix} 2 & -1 \\ 4 & 2 \end{bmatrix}$	b) $\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 0 & 1 & 0 \end{bmatrix}$	c) $\begin{bmatrix} 2 & 1 & 0 \\ 2 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix}$	d) $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$.	
(iii)	Let F denote the se matrix of coefficie	et of nontrivial solu	ations of homogenous $X \in \mathbb{R}^3$. Then, F is	linear system AY = 0 where t	
2200	a) M-	b) {(0.0.0)}	c) ()	1) m3 ((0 0 0))	
(iv)	If $W = span \{(1, -$	-1, 0, 1), (-1, 1, 1,	0), $(2, -2, 1, 3)$ }, then	n dimW is equal to:	
(-)	u) .	0) 4	C) 3	d) A	
(v)	$B = \{(2, -4), (3 \text{ vector } [(1,1)]_B \text{ is e} \}$, -3)} is an ordere equal to:	d basis of the vector sp	pace \mathbb{R}^2 , then the coordinate	
	a) [1]	b) $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$	c) $\begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$	d) $\begin{bmatrix} -1 \\ a \end{bmatrix}$.	
(vi)	If $U = \begin{bmatrix} 2 & 5 \\ -1 & r \end{bmatrix}$ and	$dV = \begin{bmatrix} -3 & 2x \\ 3 & -1 \end{bmatrix} a$	are orthogonal matrice	s in $M_2(\mathbb{R})$ with respect to the	
	inner product < A, E	$B > = trace(AB^{T}),$	then x is equal to:	a, , , , , , , , , , , , , , , , , , ,	
	a) Z	b) -2	c) 0	d) 1.	
(vii)	If (,) is an inne	er product on R	such that $ u ^2 =$	= 2, $\ v\ ^2 = 3$, $\langle u, v \rangle = 1$, the	
	100 0100 101	is equal to.			
(viii)	a) √13	b) -14	c) 10	d) 38.	
(*111)	$\langle p, a \rangle = aa + 2bb$	on the vector spa	P_2 of polynomials	a) 38. with degree ≤ 2 is defined b	
	$\langle p,q \rangle = aa_1 + 2bb_1 + cc_1$ for all $p = a + bx + cx^2$, $q = a_1 + b_1x + c_1x^2 \in P_2$ and θ denote the angle between polynomials $2 + x + x^2$ and $-1 + x + 2x^2$, then $\cos \theta$ is equal to				
	a) $\frac{2}{\sqrt{7}}$	eriteen porynonna	$13 \times 7 \times 7 \times 3$ and -1	$+x+2x^2$, then $\cos\theta$ is equal to	
(:\	u) √7	b) $\frac{2}{7}$	c) 0	d) $\frac{6}{7}$.	
(ix)	/ morados.			(x - y, -8x + 4y). Then	
(x)	a) (5,10)	b) (10,2)	c) (-5,10)	d) (10,5).	
(^)	a) not diagonalizable	olynomial of a mat	$\operatorname{trix} A \text{ is } q_A(\lambda) = \lambda^2 -$	9, then the matrix A is:	
	a) not diagonalizable	b) diagonalizabl	e c) 3 × 3	d) not invertible.	

Question 2 [Marks: 2+2+2]: Let the matrix $A = \begin{bmatrix} 1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2 \end{bmatrix}$. Then:

- a) Find a basis of the null space of A.
- b) Find a basis for the column space of A.
- c) Verify that rank(A) + nullity(A) = 3.

Question 3 [Marks: 3+3]:

- a) Let the set $B = \{u_1, u_2, u_3\}$ be a basis for a vector space V. If $u, v \in V$ are linearly independent vectors. Then show that $\{[u]_B, [v]_B\}$ is a linearly independent subset of \mathbb{R}^3 .
- b) Find a basis for the Euclidean space \mathbb{R}^4 that includes the vectors (0,0,0,1),(1,1,1,0),(0,1,1,0).

Question 4: [Marks: 2+4]

- a) Let {u, v, w} be an orthonormal set of vectors in an inner product space. Use Pythagorean Theorem to evaluate $||u + v + w||^2$.
- b) Let the set $B = \{u_1 = (1,1,1), u_2 = (0,1,1)\}, u_3 = (0,0,1)\}$ be linearly independent in the Euclidean inner product space \mathbb{R}^3 . Construct an orthonormal set C for \mathbb{R}^3 by applying the Gram-Schmidt algorithm on B such that span(C) = span(B).

Question 5: [Marks: (4+2) + (2+2+2)]

- a) Let $A = \{v_1, v_2, v_3\}$ be a basis for vector space $V, B = \{w_1, w_2, w_3, w_4, w_5\}$ be a basis for vector space W. Let $T: V \rightarrow W$ be the linear transformation such that: $w_2 - 3w_4 + T(v_1) = 2w_1 + 7w_5$; $T(v_2) + w_4 = 2w_3 + w_5$; $w_3 + T(v_3) = 2w_2 + 4w_4 - w_5$. Then:
 - Find the transformation matrix $[T]_A^B$ with respect to the ordered bases A and B. (i)
 - Find the coordinate vector $[T(v_1 + v_2 + v_3)]_B$. (ii)
- 3 0 01 $= \begin{bmatrix} -3 & 4 & 9 \\ 0 & 0 & 3 \end{bmatrix}$. Then: Show that the matrix A is diagonalizable. b) Let

 - (ii) Find an invertible matrix P and a diagonal matrix D satisfying $P^{-1}AP = D$.
 - Find A5. (iii)