King Saud University College of Sciences Department of Mathematics

MATH-244 (Linear Algebra); Final Exam; Semester 442

Name:			Time: 3 hours
Name:	ID:	Section:	Signature:

Question 1 [Marks: 5+5]:

a) Choose the correct answer:

- (i) Let B and C be ordered bases of a vector space V with transition matrix $cP_B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$. If the coordinate vector $[v]_C = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ then the coordinate vector $[v]_B$ is:

 (a) (1,3,6) (b) (6,3,1) (c) (1,1,1) (d) (1,1,2)
- (a) (1,3,6) (b) (6,3,1) (c) (1,1,1) (d) (1,1)The dimension of the column space $col(A^t)$ of $A = \begin{bmatrix} 2 & 3 & 1 & -1 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ is:

 (a) 1

 (b) 2

 (c) 4

 (d) 5
- (iii) If $U = \begin{bmatrix} -1 & 3 \\ y & 1 \end{bmatrix}$ and $V = \begin{bmatrix} 5 & 2y \\ -4 & 1 \end{bmatrix}$ are two orthogonal matrices with respect to the inner product $\langle A, B \rangle = trace (AB^{t})$ on the vector space M_2 of 2x2 real matrices, then:

 (a) y = 2 (b) y = -2 (c) y = 0 (d) y = 1
- (iv) If the inner product on the vector space P_2 of polynomials with degree ≤ 2 is defined by $(p,q) = aa_1 + 2bb_1 + cc_1$, $\forall p = a + bx + cx^2$, $q = a_1 + b_1x + c_1x^2 \in P_2$ and θ is the angle between the polynomials $1 + x x^2$ and $2 + x 2x^2$, then:
 - (a) $\cos \theta = \frac{5}{3\sqrt{3}}$ (b) $\cos \theta = \frac{2}{\sqrt{3}}$ (c) $\cos \theta = \frac{3}{\sqrt{10}}$ (d) $\cos \theta = 1$.
- (v) If $S = \{v_1 = (2,1), v_2 = (1,0)\}$ is a basis for Euclidean space \mathbb{R}^2 and $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation defined by $T(v_1) = (1,5)$ and $T(v_2) = (0,3)$, then T(4,6) is equal to:

 (a) (6,6) (b) (-8, -22) (c) (-10, -8) (d) (4,23).
- b) Determine whether the following statements are true or false; justify your answer.
 - (i) If $\{(-3r+4s, r-s, r, s): r, s \in \mathbb{R}\}$ is the solution space of homogeneous system AX = 0, then nullity(A) = 2.
 - (ii) For any $m \times n$ matrix A, $dim(N(A^t)) + dim(col(A)) = m$.
 - (iii) The transformation $T: \mathbb{R} \to \mathbb{R}$ given by T(r) = |r| is linear.
 - (iv) Eigenvalues of any matrix are same as the eigenvalues of its reduced row echelon form.
 - (v) If the characteristic polynomial of a matrix A is $q_A(\lambda) = \lambda^2 2$, then A is diagonalizable.

Question 2 [Marks: 2.5+1+2-5]: Consider the matrix
$$A = \begin{bmatrix} 1 & 0 & -2 & 1 & 3 \\ -1 & 1 & 5 & -1 & -3 \\ 0 & 2 & 6 & 0 & 1 \\ 1 & 1 & 1 & 4 \end{bmatrix}$$
. Then:

- (i) Find a basis for col(A).
- (ii) Find dim(row(A)).
- (iii) Find a basis for the null space N(A).

Question 3 [Marks: 3+3]: Let $E = \{v_1 = (1,1,-4,-3), v_2 = (2,0,2,-2), v_3 = (2,-1,3,2)\}$. Then:

- (i) Find a basis B for the vector space span(E) such that $B \subseteq E$. If $E B \neq \phi$, then express each element of E - B as linear combination of the basic vectors.
- (ii) Use the basis B (as in Part (i)) to find a basis C for the Euclidean space R⁴.

Question 4: [Marks: 2+4]

- a) Let $\{u, v, w\}$ be an orthogonal set of vectors in an inner product space. Then show that:
- $||u||^2 + ||v||^2 + ||w||^2 = ||u + v + w||^2.$ b) Let $A = \{u_1 = (1,1,1), u_2 = (0,1,-1), u_3 = (3,-2,2)\}$. Use the Gram-Schmidt algorithm to obtain an orthonormal set B of vectors such that span(B) = span(A).

Question 5: [Marks: (2+1.5+2.5) + (2.5+1+2.5)]

- a) Let the linear transformation $T: M_2 \to \mathbb{R}^2$ be defined by $T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = (a, b), \forall a, b, c, d \in \mathbb{R}$, Then find:
- (i) A basis for ker(T).
- (ii) rank(T).
- (iii) The standard matrix $[T]_B^C$, where B and C are the standard bases of M_2 and \mathbb{R}^2 , respectively.

b) Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ x & 2 & 0 \\ y & z & -3 \end{bmatrix}$$
. Then:

- b) Let A =
 \[
 \begin{align*}
 1 & 0 & 0 \\
 x & 2 & 0 \\
 y & z & -3
 \end{align*}
 \]. Then:

 (i) Find the values of x, y and z such that λ₁ = 1, λ₂ = 2 and λ₃ = -3 are the eigenvalues of A with corresponding eigenvectors
 \[
 \begin{align*}
 1 & 1 & 0 \\
 1 & 1 & 1 & 0 \\
 1 & 1 & 1 & 0 \\
 1 & 1 & 1 & 0 \\
 1 & 1 & 1 & 0 \\
 1 & 1 & 1 & 0 \\
 1 & 1 & 1 & 0 \\
 1 & 1 & 1 & 0 \\
 1 & 1 & 1 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 &
 - diagonalizable.
 - (iii) Find A5.