Time: 3 hours

King Saud University College of Sciences Department of Mathematics

MATH-244 (Linear Algebra); Final Exam; Semester 441

Name:	ID:	Section:	Signature:	

Note: Attempt all the five questions. Scientific calculators are not allowed!

Question 1 [Marks: 5+5]:

Max. Marks: 40

- Choose the correct answer:
 - (i) If W is the subspace $\{(a, b, c, d) \in \mathbb{R}^4 : b = a c\}$ of Euclidean space \mathbb{R}^4 , then dim(W) is:
 - (ii) If rank(A) = 3 where A is a matrix of size 5×9 , then $nullity(A^T)$ is: a) 1 b) 2 c) 3
 - a) 1 b) 2 c) 3 d) 6. (iii) If θ is the angle between the matrices $A = \begin{bmatrix} 2 & 4 \\ -1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -3 & 1 \\ 4 & 2 \end{bmatrix}$ with respect to the inner product $\langle A, B \rangle = trace(AB^T)$, then $\cos \theta$ is: a) $\frac{1}{\sqrt{2}}$ b) $\frac{1}{2}$ c) $\frac{15}{\sqrt{65}}$ d) 0.
 - (iv) The value of k for which the vectors $\mathbf{u} := (u_1 = 2, u_2 = -4)$ and $\mathbf{v} := (v_1 = 1, v_2 = 3)$ in \mathbb{R}^2 are orthogonal with respect to the inner product $\langle u, v \rangle = 2u_1v_1 + ku_2v_2$ is:

 a) $\frac{1}{\sqrt{2}}$ b) $\frac{1}{2}$ c) $\frac{15}{2\sqrt{30}}$ d) $\frac{1}{3}$.
 - (v) If $B = \{(2,1), (-3,4)\}$ and $C = \{(1,1), (0,3)\}$ are bases of \mathbb{R}^2 , then the transition matrix ${}_BP_C$ from C to B is:
 - a) $\begin{bmatrix} \frac{7}{11} & \frac{1}{11} \\ \frac{9}{11} & \frac{6}{11} \end{bmatrix}$ b) $\begin{bmatrix} \frac{7}{11} & \frac{9}{11} \\ \frac{1}{11} & \frac{6}{11} \end{bmatrix}$ c) $\begin{bmatrix} \frac{7}{11} & \frac{9}{11} \\ \frac{6}{11} & \frac{1}{11} \end{bmatrix}$ d) $\begin{bmatrix} \frac{9}{11} & \frac{7}{11} \\ \frac{1}{11} & \frac{6}{11} \end{bmatrix}$
- Determine whether the following statements are true or false; justify your answer.
 - (i) If $A, B \in M_n(\mathbb{R})$, then $det(A^TB) = det(B^TA)$.
 - (ii) A basis for solution space of the following linear system is $\{(4,1,0,0), (-3,0,1,0)\}$: $x_1 4x_2 + 3x_3 x_4 = 0$ $2x_1 8x_2 + 6x_3 3x_4 = 0$.
 - (iii) If $W = \{A \in M_2(\mathbb{R}) : A \text{ is singular}\}$, then W is vector subspace of $M_2(\mathbb{R})$.
 - (iv) If u, v and w are vectors in an inner product space such that $\langle u, v \rangle = 3$, $\langle v, w \rangle = -5$, $\langle u, w \rangle = -1$ and ||u|| = 2, then $\langle u 2w, 3u + v \rangle = 25$.
 - (v) If the characteristic polynomial of 2×2 matrix A is $q_A(\lambda) = \lambda^2 1$, then A is diagonalizable.

Question 2 [Marks: 2+2+2]: Consider the matrices $A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 & -1 \\ 1 & 0 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 & -2 \end{bmatrix}$. Then:

- a) Find A⁻¹ by the elementary matrix method.
- b) Show that $nullity(A) \neq nullity(B)$.
- c) Find a basis for the null space N(B).

Question 3 [Marks: 3+3]:

- a) Find the values of x so that the set $\{(1, -2, x), (1, -x, 2), (1, -4, 2x)\}$ is linearly independent in the Euclidean space \mathbb{R}^3 .
- b) Let $F := span(\{(1,-1,0,1),(0,1,0,-1),(-1,2,0,-1)\})$ in \mathbb{R}^4 . Find a basis for F and show that $(0,1,0,0) \in F$.

Question 4: [Marks: 2+4]

- a) Let u and v be any two vectors in an inner product space. Show that:
- 2(||u||²+||v||²) = ||u+v||²+||u-v||².
 b) Let the set B := {u₁ = (1,0,0), u₂ = (3,1,-1), u₃ = (0,3,1)} be linearly independent in the Euclidean inner product space R³. Construct an orthonormal basis for R³ by applying the Gram-Schmidt algorithm on B.

Question 5: [Marks: (4+2) + (2+2+2)]

- a) Let $B = \{ (1,1,0), (0,1,1), (1,0,1) \}$ be a basis for \mathbb{R}^3 , $C = \{ x+1, x-1, x^2+1 \}$ be a basis for P_2 (the vector space of all real polynomials in variable x of degree ≤ 2 . Let $T: \mathbb{R}^3 \to P_2$ be the linear transformation: $T(a,b,c) = (a+b) + (b+c)x + (a+c)x^2$, $\forall (a,b,c) \in \mathbb{R}^3$. Then:
 - (i) Find the values of q, r, s in the transformation matrix $[T]_B^C = \begin{bmatrix} 1 & q & 0 \\ r & 1 & 1 \\ 1 & 1 & s \end{bmatrix}$ with respect to the bases B and C.
 - (ii) Find the coordinate vector [T(1,1,1)]_C.
- b) Let $A = \begin{bmatrix} 1 & 7 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & -1 \end{bmatrix}$. Then:
 - (i) Show that the matrix A is diagonalizable.
 - (ii) Find an invertible matrix P and a diagonal matrix D satisfying $P^{-1}AP = D$.
 - (iii) Find A^7 .