KING SAUD UNIVERSITY COLLEGE OF SCIENCES DEPARTMENT OF MATHEMATICS

MATH-244 (Linear Algebra); Final Exam; Semester 1 (1443 H)

Max. Marks: 40

Max. Time: 3 hours

Note: Attempt all the five questions!

Question 1 [4+2+2 marks]:

a) Find adjoint of the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 6 & 2 \\ -2 & 3 & 6 \end{bmatrix}$ and then find A^{-1} .

b) Evaluate det(det(A) B² A⁻¹), where A and B are square matrices of order 3 with det(A) = 3 and det(B) = 2.

c) Let $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 6 & 3 \\ 0 & 2 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 4 \\ -1 & 0 & 8 \end{bmatrix}$. Explain why the matrices A and B are not row equivalent to each other?

Question 2 [5+3 marks]:

a) Find the values of α and β such that the following linear system:

$$x - 2y + 3z = 4$$

 $2x - 3y + \alpha z = 5$
 $3x - 4y + 5z = \beta$

has:

- i) No solution;
- ii) Infinitely many solutions.
- b) Let $s_1 = 3 2x$, $s_2 = 2 + x$, $s_3 = 1 + x x^2$, $s_4 = x + x^2 x^3$. Find the values of a, b, c and d such that $1 6x 3x^2 4x^3 = as_1 + bs_2 + cs_3 + ds_4$.

Question 3 [4+4 marks]:

- a) Let $F = span\{u_1 = (1,1,1,1), u_2 = (0,1,2,1), u_3 = (1,0,-2,3), u_4 = (1,1,2,-2)\}$ in the Euclidean space \mathbb{R}^4 . Then:
 - i) Find dim(F)
 - ii) Show that $(1,1,0,1) \notin F$.
- b) Let $B = \{v_1 = (1,1,2), v_2 = (3,2,1), v_3 = (2,1,5)\}$ and $C = \{u_1, u_2, u_3\}$ be two bases for \mathbb{R}^3 such that

$${}_{B}P_{C} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$

is the transition matrix from C to B. Find the vectors u1, u2 and u3.

Question 4 [4+2+2 marks]:

- a) Let $w_1 = (0,0,1)$, $w_2 = (0,1,1)$, $w_3 = (1,1,1)$ be vectors in the Euclidean space \mathbb{R}^3 . Then:
 - i) Find the angle between w_1 and w_3 .
 - By applying the Gram-Schmidt process on {w₁, w₂, w₃} to find an orthonormal basis of the Euclidean space R³.
- b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by T(x, y) = (x + 4y, 2x + 3y). Find:
 - i) Ker(T)
- ii) dim Im(T)
- c) Let the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by:

$$T(x, y) = (x + 2y, x - y, 3x + y).$$

Find matrix of the transformation $[T]_B^C$, where B and C are the standard bases of \mathbb{R}^2 and \mathbb{R}^3 , respectively.

Question 5 [4 + 4 marks]:

a) Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. Find eigenvalue/s of the matrix A and determine one

basis of the corresponding eigenspace/s. Then, give reason for the non-diagonalizability of A.

b) Show that the matrix $P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & -1 \end{bmatrix}$ diagonalizes the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{bmatrix}$$
 and then use this fact to compute A^{-1} .