College of Sciences	كلية العلوم	ة ع
Department of	قسم الإحصاء وبحوث	الملكس
Statistics and Operations Research	اللعليات	Kngsauauniverst

Final Exam

December 22 2018	STAT 105	Academic year 1439-40H
08:00-10:00	Statistical Methods	First Semester

Student's Name		(سم الطالب
ID number		الرقم الجامعي
Section No.		رقم الشعبة
Classroom No.		رقم قاعة الاختبار
Teacher's Name		اسم أستاذ المقرر
Roll Number		رقم التحضير

Instructions:

- Switch off your mobile and place it under your seat.
- Time allowed is 120 Minutes.
- Do not copy answers from your neighbors. They have different questions forms.
- Choose the nearest number to your answer.
- Do not use pencils or red pens.
- For each question, put the code (Capital Letters) of the correct answer in the following table beneath the question number.
- For questions 1 (2 marks) and 38 (2 marks), put your answer below the question.

2	3	4	5	6	7	8	9	10	
C	B	C	A	D	B	C	A	B	
11	12	13	14	15	16	17	18	19	20
A	A	B	B	A	B	A	B	C	B
21	22	23	24	25	26	27	28	29	30
A	C	A	B	B	D	A	B	A	B
31	32	33	34	35	36	37			
D	D	C	D	C	B	D			

Question (1-13): Three types of medium sized cars assembled in New Zealand have been test driven by a motoring magazine and compared on a variety of criteria. In the area of fuel efficiency performance, five cars of each brand were each test driven 1000 km ; the km per liter data are obtained as follows:

Kilometres per liter					Total	
Brand A	7.6	8.4	8	7.6	8.4	40
Brand B	7.8	8	9.1	8.5	9.6	43
Brand C	9.6	10.4	9.2	9.7	10.6	49.5

Let the one way ANOVA tabulated as follows:

Source of variation	Sum of squares	Degrees of freedom	Mean Squares	Test Statistics
Treatments	SSA	$d f_{t r t}$	MSA	
Errors	SSE	$d f_{\text {er }}$	MSE	f
Total	SST	$d f_{\text {tot }}$		

At a significance level of $\alpha=0.05$, we want to compare the means of the three groups.

1. Write the hypotheses H_{0} and H_{1}. Explain (2 marks).
2. The grand mean $\bar{y}_{\text {.. }}$ is
(A) $(40+30+49.5) / 3$
(B) $(40+30+49.5) / 5$
(C) $(40+30+49.5) / 15$
3. The value of SSA is

(A) 18.5	(B) 9.43	(C) 29.5	(D) 38.75

$$
S S T=\sum_{i} \sum_{j}\left(y_{i j}-\bar{y} .\right)^{2}=\sum_{i} \sum_{j} y_{i j}^{2}-15 \bar{y}_{. .}^{2} \text { and } \sum_{i} \sum_{j} y_{i j}^{2}=1184.11
$$

4. Then SST is

(A) 4.26	(B) 24.75	(C) 13.69	(D) 0.28

5. The value of SSE is

(A) 4.26	(B) 14.75	(C) 25.23	(D)34.28

6. The degrees of freedom of the treatments $\left(d f_{\text {trt }}\right)$ is

(A) 4	(B) 3	(C) 14	(D) 2

7. The degrees of freedom of the error $\left(d f_{e r}\right)$ is
(A) 10
(B) 12
(C) 14
(D) 8
8. The degrees of freedom of the total $\left(d f_{t o t}\right)$ is

(A) 15	(B) 16	(C) 14	(D) 17

9. The Mean Squares of the treatments (MSA) is
(A) 4.72
(B) 9.25
(C) 14.75
(D) 19.37
10. The Mean Squares of the errors (MSE) is
(A) 1.229
(B) 0.355
(C) 0.227
(D) 2.102
11. The value of the test statistic f is
(A) 13.29
(B) 7.53
(C) 64.98
(D) 85.35
12. The rejection region (R.R) of H_{0} is
(A) $(3.89,+\infty)$
(B) $(3.49,+\infty)$
(C) $(3.34,+\infty)$
(D) $(19.41 .+\infty)$
13. The decision about the doctor's claim is
(A) Not Reject $H_{0} \quad$ (B) Reject H_{0}

Questions (14-18): A doctor believes that the proportions of births in this country on each day of the week are equal. A simple random sample of 700 births from a recent year is selected, and the results are below.

Day	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Frequency	65	103	114	116	115	112	75
Expected frequency $\left(E_{i}\right)$	$E_{1}=100$	$E_{2}=\cdots$	$E_{3}=\cdots$	$E_{4}=100$	$E_{5}=100$	$E_{6}=100$	$E_{7}=100$

At a significance level of $\alpha=0.01$, we want to test the hypothesis if there is enough evidence to support the doctor's claim .
14. The expected frequency E_{2} is
(A) 75
(B) 100
(C) 103
(D) 75
15. The degree of freedom of the χ^{2} test statistic is
(A) 6
(B) 7
(C) 5
(D) 4
16. The value of the χ^{2} test statistic is
(A) 14.3
(B) 26.8
(C) 39.5
(D) 55.7
17. The critical value is

(A) 16.812	(B) 20.090	(C) 18.475	(D) 18.548

18. The decision about the doctor's claim is
(A) Not Reject H_{0}
(B) Reject H_{0}

Questions (19-25): The results of a random sample of children with pain from musculoskeletal injuries treated with acetaminophen, ibuprofen, or codeine are shown in the table. At $\alpha=0.10$, we want to test the hypothesis that the treatment and result are independent

	Acetaminophen	lbuprofen	Codeine
Significant Improvement	$58\left(\mathrm{E}_{11}=66.7\right)$	$81\left(\mathrm{E}_{12}=\ldots\right)$	$61\left(\mathrm{E}_{13}=66.6\right)$
Slight Improvement	$42\left(\mathrm{E}_{21}=\ldots\right)$	$19\left(\mathrm{E}_{22}=33.3\right)$	$39\left(\mathrm{E}_{23}=33.4\right)$

19. The distribution of the test statistic is

(A) t	(B) Binomial	(C) Chi squares	(D) Normal

20. The value of the expectation E_{12} is :
(A) 33.3
(B) 66.7
(C) 70.6
(D) 60.1
21. The value of the expectation E_{21} is
(A) 33.3
(B) 23.5
(C) 66.7
(D) 30.5
22. The mathematical expression of the test statistic is :

(A)	(B)	(C)	(D)
$\sum_{1}^{c} \frac{\left(O_{j}-E_{j}\right)^{2}}{E_{j}}$	$\sum_{1}^{c} \frac{\left(O_{j}-E_{j}\right)^{2}}{O_{j}}$	$\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$	$\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{O_{i j}}$

23. The value of the χ^{2} test statistic is
(A) 14.02
(B) 20.3
(C) 22.6
(D) 18.26
24. The critical value is

(A) 9.348	(B) 4.605	(C) 5.991	(D) 7.815

25. The decision about the independence is
(A) Not Reject H_{0}
(B) Reject H_{0}

Question (25-35): The shear resistance of soil, Y, is determined by measurements as a function of the normal stress, X. We assume that the errors ε_{i} are normally distributed. The data are as shown below:

x_{i}	10	11	12	13	14	15	16	17	18	19	20	21
y_{i}	14.08	15.57	16.94	17.68	18.49	19.55	20.68	21.72	22.8	23.84	24.79	25.67

We have $\sum_{i} x_{i}=186, \sum_{i} y_{i}=241.81, \sum_{i} x_{i}^{2}=3026, \sum_{i} y_{i}^{2}=5025.399, \sum_{i} x_{i} y_{i}=3895.65$
26. The coefficient $S_{x x}$ is
(A) 345
(B) 230
(C) 80
(D) 143
27. The coefficient $S_{y y}$ is
(A) 152.726
(B) 258.126
(C) 345.652
(D) 430.584
28. The coefficient $S_{x y}$ is

(A) 50.156	(B) 147.595	(C) 245.123	(D) 349.245

29. The sample linear correlation coefficient r is

(A) 0.9987	(B) 0.5642	(C) 0.4893	(D) 0.3359

- If the estimate of the linear regression line is $\hat{y}=a+b x$, then

30. The value of b is :

(A) 0.842	(B) 1.032	(C) 0.586	(D) 0.351

31. The value of a is

(A) 1.34	(B) 2.53	(C) 3.98	(D) 4.15

-We want to test the hypothesis that $b=1$ against the alternative that $b>1$ at the 0.05 level of significance. The residuals e_{i} are
$-0.394 \quad 0.064 \quad 0.402 \quad 0.109-0.113-0.085 \quad 0.013 \quad 0.0210 .069 \quad 0.077-0.005-0.158$
32. Deduce that the value of SSE is

(A) 3.145	(B) 2.232	(C) 1.962	(D) 0.389

33. The unbiased estimate of σ^{2} is

(A) 0.3145	(B) 0.1232	(C) 0.0389	(D) 0.1962

34. The value of the test statistic is

(A) 5.14	(B) 4.23	(C) 3.14	(D) 1.94

35. The critical value is
(A) 2.228
(B) 2.796
(C) 1.812
(D) 1.782
36. The decision is

(A) Not Reject H_{0}	(B) Reject H_{0}

37. The coefficient of determination R^{2} is

(A) 0.228	(B) 0.796	(C) 0.612	(D) 0.997

38. Determine the 90% confidence interval for the parameter β_{1} (2 marks).
