King Saud University Department of Mathematics Second Semester 1435-1436 H

MATH 244 (Linear Algebra)
Final Exam
Duration: 3 Hours

Student's Name	Student's ID	Group No.	Lecturer's Name

Question No.	I	II	III	IV	V	Total
Mark						

[I] Determine whether the following is True or False. [12 Points]
(1) If A is an invertible matrix, then $A A^{T}$ is invertible.
(2) If $A=\left[\begin{array}{rrr}1 & 3 & 2 \\ 2 & 1 & -2 \\ 2 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{rrr}3 & 1 & 2 \\ 1 & 2 & -2 \\ 0 & 2 & 1\end{array}\right]$, then $\operatorname{det}(B)=\operatorname{det}(A)$.
(3) The following system of equations is linear

$$
\begin{aligned}
& x+3 y^{2}=1 \\
& \sin x+y=0
\end{aligned}
$$

(4) If the characteristic polynomial of a 2×2 matrix A is $P(\lambda)=\lambda^{2}-1$, then A is invertible.
\qquad
(5) Any set containing three vectors from \mathbb{R}^{3} is a basis for \mathbb{R}^{3}.
(6) If $A=\left[\begin{array}{rr}2 & 0 \\ 3 & -1\end{array}\right]$, then the eigenvalues of A^{4} are 16 and 1.
(7) If V is a vector space, then $(-1) \mathbf{u}=-\mathbf{u}$ for all $\mathbf{u} \in V$.
(8) $W=\left\{(x, y) \in \mathbb{R}^{2}, x^{2}=y^{2}\right\}$ is a subspace of \mathbb{R}^{2}.
\qquad
(9) The vector $\mathbf{u}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ is a unit vector.
\qquad
(10) The inverse of an invertible upper triangular matrix is upper triangular.
\qquad
(11) If $\left(2 X-I_{2}\right)^{T}=\left[\begin{array}{ll}1 & 4 \\ 2 & 5\end{array}\right]$, then $X^{-1}=\left[\begin{array}{cc}3 & -1 \\ -2 & 1\end{array}\right]$.
(12) The functions $\mathbf{f}_{1}=\sin x$ and $\mathbf{f}_{2}=x \sin x$ are linearly independent.
(13) If the coordinate vector of \mathbf{v} relative to S is $(\mathbf{v})_{S}=(1,-1)$ where $S=\{(5,3),(2,1)\}$, then $\mathbf{v}=(3,2)$.
\qquad
(14) If $S=\{(1,4),(2,1)\}$ and $T=\{(1,4),(2,1),(3,5)\}$, then $\operatorname{Span}(S)=\operatorname{Span}(T)$.
(15) If C is a 6×7 matrix with $\operatorname{nullity}(C)=5$, then $\operatorname{nullity}\left(C^{T}\right)=2$.
(16) If $m_{1} \neq m_{2}$ in the system $\left\{\begin{array}{l}-m_{1} x_{1}+x_{2}=b_{1} \\ -m_{2} x_{1}+x_{2}=b_{2}\end{array}\right.$, then the system has a unique solution.
[II] Choose the correct answer. [6 Points]
(1) If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation such that $T(1,0,0)=(1,1,0), T(0,1,0)=(1,0,1)$ and $T(0,0,1)=(0,1,1)$. Then $T(3,-2,4)$ equals.
(a) $(1,7,2)$
(b) $(5,7,7)$
(c) $(3,4,1)$
(d) None of the previous
(2) The values of c, if any, for which the matrix $\left[\begin{array}{rrr}c & -c & c \\ 1 & c & 1 \\ 0 & 0 & c\end{array}\right]$ is invertible are
(a) $c \neq 0,1$
(b) $c \neq 0,-1$
(c) $c=0,-1$
(d) None of the previous
(3) If $W=\operatorname{Span}\{(1,1,1),(2,2,2)\}$, then $\operatorname{dim}(W)$ is
(a) 0
(b) 1
(c) 2
(d) None of the previous
(4) If A and B are 4×4 matrices, then $\operatorname{det}(3 A+3 A B)=$
(a) $3^{4}(\operatorname{det} A+\operatorname{det} A \cdot \operatorname{det} B)$
(b) $3^{4} \operatorname{det} A \cdot(1+\operatorname{det} B)$
(c) $3^{4} \operatorname{det} A \cdot \operatorname{det}(I+B)$
(d) None of the previous
(5) If $T_{1}(x, y)=(x-y, x+y)$ and $T_{2}(x, y)=(4 x, 3 x+2 y)$, then the standard matrix for $T_{2} \circ T_{1}$ is
(a) $\left[\begin{array}{rr}1 & -2 \\ 7 & 2\end{array}\right]$
(b) $\left[\begin{array}{ll}4 & -4 \\ 5 & -1\end{array}\right]$
(c) $\left[\begin{array}{rr}4 & 5 \\ -4 & -1\end{array}\right]$
(d) None of the previous
(6) If T is the rotation about the origin, through an angle $\theta=60^{\circ}$, then [T] equals
(a) $\left[\begin{array}{rr}\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right]$
(b) $\left[\begin{array}{rr}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right]$
(c) $\left[\begin{array}{rr}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right]$
(d) None of the previous

OVER
(7) If $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right]$, then $\operatorname{rank}(A)$ equals
(a) 0
(b) 1
(c) 2
(d) None of the previous
(8) The number of parameters in the general solution of $A \mathbf{x}=\mathbf{0}$, where A is a 5×7 matrix of rank 3 , is
(a) 3
(b) 4
(c) 2
(d) None of the previous
(9) If $\mathbf{v}=(-1,2,1)$ and $\mathbf{u}=(0,4,-5)$, then $2 \mathbf{v} \cdot \mathbf{u}$ is
(a) $(0,16,-10)$
(b) -4
(c) 6
(d) None of the previous
(10) Using Cramer's rule to solve the following system for y

$$
\begin{array}{r}
x-4 y+z=6 \\
4 x-y+2 z=1 \\
2 x+2 y-3 z=0
\end{array}
$$

gives
(a) $y=\frac{\left|\begin{array}{ccc}6 & -4 & 1 \\ 1 & -1 & 2 \\ 0 & 2 & -3\end{array}\right|}{\left|\begin{array}{ccc}1 & -4 & 1 \\ 4 & -1 & 2 \\ 2 & 2 & -3\end{array}\right|}$
(b) $y=\frac{\left|\begin{array}{ccc}1 & 6 & 1 \\ 4 & 1 & 2 \\ 2 & 0 & -3\end{array}\right|}{\left|\begin{array}{ccc}1 & -4 & 1 \\ 4 & -1 & 2 \\ 2 & 2 & -3\end{array}\right|}$
(c) $y=\frac{\left|\begin{array}{ccc}1 & -4 & 6 \\ 4 & -1 & 1 \\ 2 & 2 & 0\end{array}\right|}{\left|\begin{array}{ccc}1 & -4 & 1 \\ 4 & -1 & 2 \\ 2 & 2 & -3\end{array}\right|}$
(d) None of the previous
(a) i- Show that $\lambda=2$ is an eigenvalue of $A=\left[\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$
ii- Find a basis for the eigenspace of A corresponding to $\lambda=2$
(b) i- Compute the eigenvalues of $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
ii- Are the columns of B linearly independent? Justify your answer.
(a) Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where $\mathbf{v}_{1}=(1,-3,1,1), \mathbf{v}_{2}=(2,-1,1,1), \mathbf{v}_{3}=(4,-7,3,3)$.
i- Show that S is not a basis for \mathbb{R}^{4};
ii- Find a subset of S that forms a basis B for $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$;
iii- Express the vector of S which is not in B as a linear combination of vectors from B.
(b) Find a basis for the row space of $A=\left[\begin{array}{cccc}1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2\end{array}\right]$
[V] [9 Points]
(a) Find the standard matrix for the composed transformation in \mathbb{R}^{3} given by a reflection about the $x y$-plane, followed by a reflection about the $x z$-plane, followed by an orthogonal projection on the $y z$-plane.
(b) If T is the matrix operator $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, defined by

$$
\left\{\begin{array}{lll}
w_{1}= & x_{1} & +4 x_{2} \\
-x_{3} \\
w_{2}= & 2 x_{1} & +7 x_{2} \\
w_{3}= & x_{1}+3 x_{2} &
\end{array}\right.
$$

i- Show that T is one-to-one.
ii- Find the standard matrix for T^{-1}
iii- Compute $T^{-1}(2,0,2)$.
iv- Is $\operatorname{Range}(T)=\mathbb{R}^{3}$? Justify your answer.

