

Student's Name	Student's ID	Group No.	Lecturer's Name

Question No.	Ι	II	III	IV	\mathbf{V}	Total
Mark						

[I] Determine whether the following is True or False. [12 Points]

(1) If A is an invertible matrix, then AA^T is invertible.

(2) If
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & -2 \\ 2 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 2 & -2 \\ 0 & 2 & 1 \end{bmatrix}$, then $\det(B) = \det(A)$. ()

(3) The following system of equations is linear

 $\begin{array}{rcl} x+3y^2 &=& 1\\ \sin x+y &=& 0 \end{array}$

)

)

)

)

(

(

(

(

)

- (4) If the characteristic polynomial of a 2×2 matrix A is $P(\lambda) = \lambda^2 1$, then A is invertible. (
- (5) Any set containing three vectors from \mathbb{R}^3 is a basis for \mathbb{R}^3 .

(6) If $A = \begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix}$, then the eigenvalues of A^4 are 16 and 1.

(7)	If V is a vector space, then $(-1)\mathbf{u} = -\mathbf{u}$ for all $\mathbf{u} \in V$.	()
(8)	$W = \{(x, y) \in \mathbb{R}^2, x^2 = y^2\}$ is a subspace of \mathbb{R}^2 .	()
(9)	The vector $\mathbf{u} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ is a unit vector.	()
(10)	The inverse of an invertible upper triangular matrix is upper triangular.	()
(11)	If $(2X - I_2)^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \end{bmatrix}$, then $X^{-1} = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix}$.	()
(12)	The functions $\mathbf{f_1} = \sin x$ and $\mathbf{f_2} = x \sin x$ are linearly independent.	()
(13)	If the coordinate vector of \mathbf{v} relative to S is $(\mathbf{v})_S = (1, -1)$ where $S = \{(5, 3), (2, 1)\}$, then $\mathbf{v} = (3, 2)$.	()
(14)	If $S = \{(1,4), (2,1)\}$ and $T = \{(1,4), (2,1), (3,5)\}$, then $\text{Span}(S) = \text{Span}(T)$.	()
(15)	If C is a 6×7 matrix with $nullity(C) = 5$, then $nullity(C^T) = 2$.	()
(16)	If $m_1 \neq m_2$ in the system $\begin{cases} -m_1x_1 + x_2 = b_1 \\ -m_2x_1 + x_2 = b_2 \end{cases}$, then the system has a unique solution.	()

[II] Choose the correct answer. [6 Points]

- (1) If $T : \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation such that T(1,0,0) = (1,1,0), T(0,1,0) = (1,0,1) and T(0,0,1) = (0,1,1). Then T(3,-2,4) equals.
 - (a) (1,7,2) (b) (5,7,7) (c) (3,4,1) (d) None of the previous

(2) The values of c, if any, for which the matrix $\begin{bmatrix} c & -c & c \\ 1 & c & 1 \\ 0 & 0 & c \end{bmatrix}$ is invertible are

(a) $c \neq 0, 1$ (b) $c \neq 0, -1$ (c) c = 0, -1 (d) None of the previous

(3) If $W = \text{Span}\{(1, 1, 1), (2, 2, 2)\}$, then dim(W) is

(a) 0	(b) 1	(c) 2	(d) None of the previous

(4) If A and B are 4×4 matrices, then det(3A + 3AB) =

(a) $3^4 (\det A + \det A \cdot \det B)$ (b) $3^4 \det A \cdot (1 + \det B)$ (c) $3^4 \det A \cdot \det(I + B)$ (d) None of the previous

(5) If $T_1(x,y) = (x-y,x+y)$ and $T_2(x,y) = (4x, 3x+2y)$, then the standard matrix for $T_2 \circ T_1$ is

(a) $\begin{bmatrix} 1 & -2 \\ 7 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} 4 & -4 \\ 5 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & 5 \\ -4 & -1 \end{bmatrix}$ (d) None of the previous

(6) If T is the rotation about the origin, through an angle $\theta = 60^{\circ}$, then [T] equals

(a)
$$\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$
 (b) $\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ (c) $\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$ (d) None of the previous

(7) If $A = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$, then $rank(A)$ equals					
	(a) 0	(b) 1	(c) 2	(d) None of the previous	
(8) The number of parameters in the general solution of $A\mathbf{x} = 0$, where A is a 5 × 7 matrix of rank 3, is					
	(a) 3	(b) 4	(c) 2	(d) None of the previous	
(9) If $\mathbf{v} = (-1, 2, 1)$ and $\mathbf{u} = (0, 4, -5)$, then $2\mathbf{v} \cdot \mathbf{u}$ is					
	(a) (0, 16, -10)	(b) -4	(c) 6	(d) None of the previous	

(10) Using Cramer's rule to solve the following system for y

$$\begin{aligned} x - 4y + z &= 6\\ 4x - y + 2z &= 1\\ 2x + 2y - 3z &= 0 \end{aligned}$$

gives

$$(\mathbf{a}) \ y = \frac{\begin{vmatrix} 6 & -4 & 1 \\ 1 & -1 & 2 \\ 0 & 2 & -3 \end{vmatrix}}{\begin{vmatrix} 1 & -4 & 1 \\ 4 & -1 & 2 \\ 2 & 2 & -3 \end{vmatrix}}$$
 (b)
$$y = \frac{\begin{vmatrix} 1 & 6 & 1 \\ 4 & 1 & 2 \\ 2 & 0 & -3 \end{vmatrix}}{\begin{vmatrix} 1 & -4 & 1 \\ 4 & -1 & 2 \\ 2 & 2 & -3 \end{vmatrix}}$$
 (c)
$$y = \frac{\begin{vmatrix} 1 & -4 & 6 \\ 4 & -1 & 1 \\ 2 & 2 & 0 \end{vmatrix}}{\begin{vmatrix} 1 & -4 & 1 \\ 4 & -1 & 2 \\ 2 & 2 & -3 \end{vmatrix}}$$
 (d)

(d) None of the previous

[III] [9 Points]

- (a) i- **Show** that $\lambda = 2$ is an eigenvalue of $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$
 - ii- \mathbf{Find} a basis for the eigenspace of A corresponding to $\lambda=2$

(b) i- **Compute** the eigenvalues of $B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

ii- \mathbf{Are} the columns of B linearly independent? $\mathbf{Justify}$ your answer.

[IV] [8 Points]

- (a) Let $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$, where $\mathbf{v}_1 = (1, -3, 1, 1)$, $\mathbf{v}_2 = (2, -1, 1, 1)$, $\mathbf{v}_3 = (4, -7, 3, 3)$.
 - i- Show that S is not a basis for \mathbb{R}^4 ;
 - ii- **Find** a subset of S that forms a basis B for $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\};$
 - iii- **Express** the vector of S which is not in B as a linear combination of vectors from B.

(b) **Find** a basis for the row space of $A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix}$

$[\mathbf{V}]$ [9 Points]

(a) Find the standard matrix for the composed transformation in \mathbb{R}^3 given by a reflection about the *xy*-plane, followed by a reflection about the *xz*-plane, followed by an orthogonal projection on the *yz*-plane.

(b) If T is the matrix operator $T: \mathbb{R}^3 \to \mathbb{R}^3$, defined by

$$\begin{cases} w_1 = x_1 + 4x_2 - x_3 \\ w_2 = 2x_1 + 7x_2 + x_3 \\ w_3 = x_1 + 3x_2 \end{cases}$$

- i- Show that T is one-to-one.
- ii- **Find** the standard matrix for T^{-1}
- iii- Compute $T^{-1}(2, 0, 2)$.
- iv- Is $Range(T) = \mathbb{R}^3$? Justify your answer.