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Endurance Limit Meodifying Factors

We have seen that the rotating-beam specimen used in the laboratory to determine
endurance limits is prepared very carefully and tested under closely controlled condi-
tions. It 1s unrealistic to expect the endurance limit of a mechanical or structural mem-
ber to match the values obtained in the laboratory. Some differences include

* Material: composition, basis of failure, variability

= Manufacturing: method, heat treatment, fretting corrosion, surface condition, stress
concentration

* Environmeni: corrosion, temperature, stress state, relaxation times

= Design: size, shape, life, stress state, stress concentration, speed, fretting, galling

Se = kakpk kyk.ky S, (&-18]

where k; = surface condition modification factor
k= size modification factor
k. = load modification factor
k4 = temperature modification factor
k. = reliability factor!
kr = miscellaneous-effects modification factor
5. = rotary-beam test specimen endurance limit

&¢ = endurance limit at the critical location of a machine part in the geom-
etry and condition of use



Surface Factor k,

The surface of a rotating-beam specimen 1s highly polished, with a final polishing in the
axial direction to smooth out any circumferential scratches. The surface modification
factor depends on the quality of the finish of the actual part surface and on the tensile
strength of the part material. To find quantitative expressions for commeon finishes of
machine parts (ground, machined, or cold-drawn, hot-rolled, and as-forged), the coordi-
nates of data points were recaptured from a plot of endurance limit versus ultimate
tensile strength of data gathered by Lipson and Noll and reproduced by Horger.'* The
data can be represented by

ko =aSP, (6-19)

where S, 1s the minimum tensile strength and a and b are to be found in Table 6-2.

Factor a
5;;; kpsi 5;;; MPa
Ground ].34 1.58
Machined or cold-drawn 270 45]
Hat-rolled 14 .4 577

Asforged 9.9 272

Exponent

b

—0.085
—0.245
—0.718
—0.995



Size Factor kg

The size factor has been evaluated using 133 sets of data points.'” The results for bend-
ing and torsion may be expressed as

(d/0.3)717 = 0.8794-17 0 ll=d=<2in
f 0.914"157 2<d=<10in (6-20)
B = -
(d/7.62)7107 = 124472197 279 <4 <5l mm
| 1.51470157 51 < d < 254 mm
For axial loading there 15 no size effect, so

EXAMPLE 6-4

Solution

Answer

Answer

A steel shaft loaded in bending is 52 mm in diameter, abutting a filleted shoulder 38 mm
in diameter. The shaft material has a mean ultimate tensile strength of 690 MPa.
Estimate the Marin size factor &, if the shaft is used in

(a) A rotating mode.

(b) A nonrotating mode.

(a) From Eq. (6-20)

kp = 151477 = 1.51(52)7%1% = 0.812

(b) From Table 6-3,
d. = 0.37d = 0.37(52) = 19.24 mm
From Eq. (6-20),

k, = (ﬁ) = 0.906
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Loading Factor k.

When fatigue tests are carried out with rotating bending, axial (push-pull), and torsion-
al loading, the endurance limits differ with S, This is discussed further in Sec. 6—17.

Here, we will specify average values of the load factor as

| bending
k.= 1 (.83 axial [6-26]
0.39 torsion'’
Temperature Factor ky
Effect of Operating
Temperature on the Temperature, °C 51/ Srr Temperature, °F St/ Ser
Tensile Strength of 20 1. 000 70 1.000
Steel ™ (Sr = tensile 50 1 010 100 1.008
strength at operafing 100 1.020 200 1.020
Tempemture; 150 1 025 300 1.024
Ser = tensile strength 200 1 020 A00 1.018
at room femperature; 250) ]-,:.:.O 500 D-DQS
0.099 <4 < 0.110) 400 0.975 600 0.963
350 0.943 700 0.927
400 0.900 800 0.872
450 0.843 P00 0797
500 0.768 1000 0.698
550 0.6752 1100 0.567

600 0.54%




kg = 0.975 4+ 0.432(107*) Tr — 0.115(1077) T
4 0.104(107%)TF — 0.595(10~'%) T} [ 6-27)

where 70 < Ty = 1000°PE

Two types of problems arise when temperature is a consideration. If the rotating-
beam endurance limit 1s known at room temperature, then use

S

ki =
SkT

(6-28)

from Table 64 or Eq. (6-27) and proceed as usual. If the rotating-beam endurance limit
15 not given, then compute it using Eq. (6-8) and the temperature-corrected tensile
strength obtained by using the factor from Table 6—4. Then use ky = 1.

EXAMPLE 6-5

Solution

Answer

Answer

A 1035 steel has a tensile strength of 490 MPa and is to be used for a part that sees
230°C in service. Estimate the Marin temperature modification factor and (S,)230° if
(a) The room-temperature endurance limit by test is (S;)372 = 270 MPa.

(b) Only the tensile strength at room temperature is known.

(a) First, from Eq. (6-27),
kg = 0.9877 + 0.6507(107%)(230) — 0.3414(107)(2307)
+ 0.5621(107)(230%) — 6.246(107'%)(230%) = 1.00767
Thus,
(Se)230° = ka (S)37° = 1.00767(270) = 272.07 MPa
() Interpolating from Table 6-4 gives

230 — 200
(S1)Srr)zser = 102 + (L0 — 102) Zor—— 0 = 10197

Thus, the tensile strength at 230°C is estimated as
(Sun)230° = (S7/ Sr7)230° (Sur)37° = 1.0197(490) = 499.7 MPa
From Egq. (6-8) then,
(Se)230° = 0.5(Sur )230° = 0.5(499.7) = 249.9 MPa

Part a gives the better estimate due to actual testing of the particular material.



Reliability Factor k.
ke =1—0.08z, (6—29)

where 7, 1s defined by Eq. (20-16) and values for any desired reliability can be deter-
mined from Table A—10. Table 6-5 gives reliability factors for some standard specified
reliabilities.

Reliability, % Transformation Variate z, Reliability Factor k.
50 0 1.000
Q0 1.288 0.8%7
Q5 1.645 0.868
o9 2.326 0.814
9.9 3.091 0.753
P0.99 3.719 0.702
P0.909 4.265 0.659

Spele s 4.753 0.5620




Miscellaneous-Effects Factor k¢

Though the factor k¢ 1s intended to account for the reduction in endurance limit due to
all other effects, it is really intended as a reminder that these must be accounted for,
because actual values of k¢ are not always available.

Residual stresses may either improve the endurance limit or affect it adversely.
Generally, if the residual stress in the surface of the part 1s compression, the endurance
limit 1s improved. Fatigue failures appear to be tensile failures, or at least to be caused
by tensile stress, and so anything that reduces tensile stress will also reduce the possi-
bility of a fatigue failure. Operations such as shot peening, hammering, and cold rolling
build compressive stresses into the surface of the part and improve the endurance limit
significantly. Of course, the material must not be worked to exhaustion.

The endurance limits of parts that are made from rolled or drawn sheets or bars,
as well as parts that are forged, may be affected by the so-called directional characrer-
istics of the operation. Rolled or drawn parts, for example, have an endurance limit
in the transverse direction that may be 10 to 20 percent less than the endurance limit in
the longitudinal direction.

Parts that are case-hardened may fail at the surface or at the maximum core radius,
depending upon the stress gradient. Figure 6—19 shows the typical triangular stress dis-
tribution of a bar under bending or torsion. Also plotted as a heavy line in this figure are
the endurance limits 5, for the case and core. For this example the endurance limit of the
core rules the design because the figure shows that the stress @ or . whichever applies,
at the outer core radius, i1s appreciably larger than the core endurance limit.

—— & (case) ————

-+ oar T

|
|

Cuse
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Corrosion

It 15 to be expected that parts that operate in a corrosive atmosphere will have a lowered
fatngue resistance. This 1s, of course, true, and it 1s due to the roughening or pitting of
the surface by the corrosive material. But the problem is not so simple as the one of
finding the endurance limit of a specimen that has been corroded. The reason for this is
that the corrosion and the stressing occur at the same time. Basically, this means that in
time any part will fail when subjected to repeated stressing in a corrosive atmosphere.

There 15 no fatigue limit. Thus the designer’s problem is to attempt to minimize the fac-
tors that affect the fatigue life; these are:

* Mean or static stress

* Alternating stress

* Electrolyte concentration

* Dissolved oxygen in electrolyte

» Material properties and composition
» Temperature

* Cyclic frequency

* Fluid flow rate around specimen



Electrolytic Plating

Metallic coatings, such as chromiom plating, nickel plating, or cadmium plating, reduce
the endurance limit by as much as 50 percent. In some cases the reduction by coatings
has been so severe that it has been necessary to eliminate the plating process. Zinc
plating does not affect the fatigue strength. Anodic oxidation of light alloys reduces

bending endurance lhimits by as much as 39 percent but has no effect on the torsional
endurance lumit.

Metal Spraying
Metal spraying results in surface imperfections that can initiate cracks. Limited tests
show reductions of 14 percent in the fatigue strength.

Cyvelic Frequency

If. for any reason, the fatigue process becomes time-dependent, then it also becomes
frequency-dependent. Under normal conditions, fatigue fallure is independent of fre-
quency. But when corrosion or high temperatures, or both, are encountered, the cyclic
rate becomes important. The slower the frequency and the higher the temperature, the
higher the crack propagation rate and the shorter the life at a given stress level.

Fretiage Corrosion

The phenomenon of frettage comrosion 1s the result of microscopic motions of tightly
fitting parts or structures. Bolted joints, bearing-race fits, wheel hubs, and any set of
tightly fitted parts are examples. The process involves surface discoloration, pitting, and
eventual fatigue. The frettage factor ky depends upon the material of the mating pairs
and ranges from (.24 to 0.90.

10



Stress Concentration

Any discontinuity in a machine part alters the

siress distribution in the neighborhood of the discontinuity so that the elementary siress
equations no longer describe the state of stress in the part at these locations. Such dis-
continuities are called stress raisers, and the regions in which they oceur are called

areas of stress concentration.

A theoretical, or geometric, siress-concentration factor K; or Ky 15 used to relate
the actual maximum stress at the discontinuity to the nominal stress. The factors are

defined by the equations

K, — T
)

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
diw

Fma, (2-48)

11



Figure A-15-1

Bar in tension or simple
compression with o fransverse
hole. an = F/A, wher

A= [w—d)tand tisthe
thickness.

Figure A-15-2

Rectangular bar with a
transverse hole in bending.
ag = Mcyl, where
[=fw—dh 12,

Figure A-15-3

MNotched rectangular bar in

tension or simple compression.
on =FjA, where A =dt and ¢

is the thickness.

a0
d
|
2.8 oo
— e .
1
2.6
24
22
2.0
0 0.1 0z 0.3 0.4 0.5 0.6 0.7 0.8
diw
30
{
dih=10 .f _*_
v ¥
b, r
" —
Ly
14
1.0
(i} 0.1 0z 0.3 0.4 0.5 0.6 0.7 0.8
diw
30
26
22

0.05 0.10 0.15

rid

0.20

0.23

12



&-10

Stress Concentration and Notch Sensitivity

In Sec. 3-13 it was pointed out that the existence of irregularities or discontinuities,
such as holes, grooves, or notches, in a part increases the theoretical stresses signifi-
cantly in the immediate vicinity of the discontinuity. Equation (3—48) defined a stress
concentration factor K, (or K,;), which is used with the nominal stress to obtain the
maximum resulting stress due to the irregularity or defect. It turns out that some mate-
rials are not fully sensitive to the presence of notches and hence, for these, a reduced
value of K, can be used. For these materials. the maximum stress is. in fact,

Omax = K 77 or Tmax = KfsTo (6-30)

where K7 is a reduced value of K; and op is the nominal stress. The factor Ky is com-
monly called a fatigue stress-conceniration factor, and hence the subscript f. So it 1s
convenient to think of Kr as a stress-concentration factor reduced from K; because of
lessened sensitivity to notches. The resulting factor is defined by the equation

maximum stress in notched specimen

Kr = - - a
! stress in notch-free specimen fe)

Notch sensitivity q 1s defined by the equation
K- Kpy— 1

q = K —1 or {shear = —K” 1 (6-31)

where g is usually between zero and unity. Equation (6-31) shows that if ¢ = 0, then
Ky =1, and the material has no sensitivity to notches at all. On the other hand, if
g = 1, then Ky = K;. and the material has full notch sensitivity. In analysis or design
work, find K; first, from the geometry of the part. Then specify the material, find g, and
solve for Krfrom the equation

Kf =1+ Q{Kr — 1) or Kfs' = l‘|‘qaheaer:s — 1) (6-32)

13



For steels and 2024 aluminum alloys, use Fig. 6-20 to find ¢ for bending and axial

loading. For shear loading, use Fig. 6-21. In using these charts it is well to know that
the actual test results from which the curves were derived exhibit a large amount of

about the true value of g. Also, note that g is not far from unity for large notch radii.
The notch sensitivity of the cast irons is very low, varying from 0 to about 0.20,
depending upon the tensile strength. To be on the conservative side, it 1s recommended
that the value g = 0.20 be used for all grades of cast ron.
Figure 620 has as its basis the Neuber equation, which is given by

K — 1
1+ fa/r

where +/a is defined as the Neuber constant and is a material constant. Equating
Egs. (6-31) and (6-33) yields the notch sensitivity equation

1

Kp=1+ (6-33)

[6-34)

g =

S

] -
T

For steel, with S, in kpsi, the Neuber constant can be approximated by a third-order
polynomial fit of data as

Bending or axial: +/a = 0.246 — 3.08(107°)S,, + 1.51(107°)SZ, — 2.67(107%)S?,
(6-35q)
Torsion: va =0.190 — 2.51(107°)S,, + 1.35(107°) 2, — 2.67(107%)S>, (6-35b)

To be conservative, it is recommended that the value of q=0.2

for all grades of cast iron.

14
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EXAMPLE 6-6

Solution

Answer

Answer

A steel shaft in bending has an ultimate strength of 690 MPa and a shoulder with a fil-
let radius of 3 mm connecting a 32-mm diameter with a 38-mm diameter. Estimate K
using:

(a) Figure 6-20.

(b) Equations (6-33) and (6-35).

From Fig. A—15-9, using D/d = 38/32 = 1.1875, r/d = 3/32 = 0.093 75, we read
the graph to find K, = 1.65.

(@) From Fig. 6-20, for §,; = 690 MPa and r = 3 mm, g = 0.84. Thus, from Eq. (6-32)
Ki=1+¢q(K,—1)=1+ 0.84(1.65—1) = 1.55

(b) From Eq. (6-35) with S, = 690 MPa = 100 kpsi, /a = 0.0622+/in = 0.313,/mm.
Substituting this into Eq. (6-33) with r = 3 mm gives

K14 K, —1 o1 165—1
=Y T dair l+1:1.313_'
B

16



EXAMPLE 6-7  For the step-shaft of Ex. 6-6, it is determined that the fully corrected endurance limit is
S, = 280 MPa. Consider the shaft undergoes a fully reversing nominal stress in the fil-
let of (Orey)nom = 260 MPa. Estimate the number of cycles to failure.

Solution From Ex. 6-6, K= 1.55, and the ultimate strength is §,, = 690 MPa = 100 kpsi. The
maximum reversing stress is
(Orev)max = Kf (Orev)nom = 155(260) = 403 MPa
From Fig. 618, f = 0.845. From Egs. (6-14), (6—15), and (6-16)

L fSu)®  [0.845(690)]7

— 1214 MPa
s, 280
I fSe 1. [0.845(690)

b=—=1 — _Zlog | 2222 01062
5= X 3 Og[ 280 }

Answer N = (O ) = (m) = 32.3(10°) cycles
a

17



Table A-20

Determninisfic A5TH Minimum Tensile and Yield Srengths for Some HatRolled (HR) and Cald Drawn (CO0) Sesls
[The sirznghs listed are estimated ASTW minimum values in the size range 18 1o 32 rom (3 1o 11 inl. Thess
sirengths are svitable for use with the design factar defined in Sec. 1-10, provided the materials conform to
ASTM AS or ASSE requirements or are required in the puchuse specifi:nlin:ns. Femember thal a nurrba‘ing
syslem is nol a specification.]  Sowes: 1984 SAE Handsook, o 215,

2 | 4 5 & T -]
Tensile Yield
SAE and/or Proces- Strength, Strength, Eloengafionin Reducfien m Brinell

UNS Na. AISINe,  sing MPa (kpsi] MPa {(kpsi] 2 in. % Area,%  Hardness
LER TN 1008 HR 30 (43) 170 [24) a0 55 24
o 330 (48) 2B0O 413 20 45 25
S10100 1210 HE 220 (47 180 (28] 2B 50 =5
il 270 [53) 300 (44) 20 40 1045
S10150 12315 HR 240 (50 190 (27 5] 2B A0 101
o 300 (5 320 {47 18 40 111
S10180 1318 HE 400 (58 220 (3 25 50 114
il 447 [hd) 370 (Ad) 14 40 124
10200 1220 HR 380 (55 210 (20 25 A0 111
b 470 (&8 320 (57 15 40 131
S103C0 1330 HR 470 ) 240 1375 20 42 137
o 520 [T 440 {hd) 12 35 142
S10350 1035 HE S0 72 ZF0 (3.5 18 40 143
il 550 (80 A40 (A7) 12 35 183
S 10400 1240 HR 520 [T 290 {42 18 40 142
b S0 (BE) 420 (713 12 35 170
10450 1045 HE S0 B A0 45 Tés 40 1&3
il GI0 21 530 77 12 35 179
510500 1350 HE G20 R0 340 (4% 5| 14 35 179
il AP0 [ TO 580 (B84] 13 20 157
10500 1440 HF S0 28] 370 (54) 12 20 201
510800 1280 HE L I e A20 (&1.5] 13 25 22

S1050 1005 HR B30 120 A& i) 13 25 248




EXAMPLE 6-8

Solution

A 1015 hot-rolled steel bar has been machined to a diameter of 25 mm. It is to be placed
in reversed axial loading for 70 000 cycles to failure in an operating environment of
300°C. Using ASTM minimum properties, and a reliability of 99 percent, estimate the
endurance limit and fatigue strength at 70 000 cycles.

From Table A-20, S,, = 340 MPa at 20°C. Since the rotating-beam specimen
endurance limit is not known at room temperature, we determine the ultimate strength
at the elevated temperature first, using Table 6—4. From Table 64,

g
(—T) — 0.975
SRT / 3000

The ultimate strength at 300°C is then
(Sut)300° = (S7/ SrT)300° (Sur)20° = 0.975(340) = 331.5 MPa

The rotating-beam specimen endurance limit at 300°C is then estimated from Eq. (6-8)
as

8¢ = 0.5(331.5) = 165.8 MPa

Next, we determine the Marin factors. For the machined surface, Eq. (6-19) with
Table 6-2 gives

k, = aSt = 4.51(331.5%%%) = 0.969

19



Answer

Answer

For axial loading, from Eq. (6-21), the size factor k;, = 1, and from Eq. (6-26) the load-
ing factor is k. = 0.85. The temperature factor k; = 1, since we accounted for the tem-
perature in modifying the ultimate strength and consequently the endurance limit. For
99 percent reliability, from Table 6-5, k., = 0.814. Finally, since no other conditions
were given, the miscellaneous factor is kf = 1. The endurance limit for the part is esti-
mated by Eq. (6-18) as

L E— kakbkckdkekaé
= 0.969(1)(0.85)(1)(0.814)(1)165.8 =111 MPa

For the fatigue strength at 70 000 cycles we need to construct the S-N equation. From
p. 285, since S,; = 331.5 < 490 MPa, then f = 0.9. From Eq. (6-14)

_ (fSu)* _ [0.933L9)P
=TS T 1

= 891 MPa

and Eq. (6-15)

1 Sa 1 0.9(331.5

Finally, for the fatigue strength at 70 000 cycles, Eq. (6—13) gives

Sy= a N” = 891(70 000) >'**! = 180.5 MPa

20



EXAMPLE 6-9

Solution

Figure 6-22a shows a rotating shaft simply supported in ball bearings at A and D and
loaded by a nonrotating force Fof 6.8 kN. Using ASTM “minimum” strengths, estimate
the life of the part.

From Fig. 6-22b we learn that failure will probably occur at B rather than at C or at the
point of maximum moment. Point B has a smaller cross section, a higher bending
moment, and a higher stress-concentration factor than C, and the location of maximum
moment has a larger size and no stress-concentration factor.

We shall solve the problem by first estimating the strength at point B, since the strength
will be different elsewhere, and comparing this strength with the stress at the same point.

From Table A-20 we find S, = 690 MPa and S, = 380 MPa. The endurance limit
S5’ 1s estimated as i

§¢ = 0.5(690) = 345 MPa
From Eq. (6-19) and Table 6-2,
kg = 4.51(690)~%% = 0.798
From Eq. (6-20),
ky = (32/7.62)7197 = 0.858
Since k, = kg =k, =kp = 1,
Se = 0.798(0.858)345 = 236 MPa

To find the geometric stress-concentration factor K; we enter Fig. A—15-9 with D/d =
38/32=1.1875 and r/d =3/32=0.09375 and read K, = 1.65. Substituting
Su = 690/6.89 = 100 kpsi into Eq. (6-35) yields \/a = 0.0622 +/in = 0.313./mm.
Substituting this into Eq. (6-33) gives

21



Figure 6-22

[al Shatt drawing showing all
dimensicns in millimeters; all
fillets 3-mm radivs. The shaft
rotates and the load 1s
stationary; material is
machined from AIS| 1050
colddrawn stesl. (5] Bending
moment diagrarm.

Kr=1

K:—1

— =1
T 14 ja/r +

1.65—1

1 4 0.313/4/3
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i-‘ 250 = 75 l»lm—*-i—l'?'i—l-

_‘L Y W— . S i _
— Y L 1 I
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1 L 32 s 1
30 - a0

By Ry
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11:;‘:I“.'I'.l.
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= 1.55
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Answer

The next step is to estimate the bending stress at point B. The bending moment
is

225F 225(6.8)
Mp=Rix=—"20= ————
550 550

250 = 6955 N - m

Just to the left of B the section modulus is [ /¢ = md*/32 = w327 /32 = 3.217 (10°)mm”.
The reversing bending stress is, assuming infinite life,

M 695.5
o =Ki—2 = 1.55—(10)~® = 335.1(10°) Pa = 335.1 MPa
e 3217

This stress is greater than S, and less than Sy. This means we have both finite life and
no yielding on the first cycle.

For finite life, we will need to use Eq. (6-16). The ultimate strength, S,; = 690
MPa = 100 kpsi. From Fig. 6-18, f = 0.844. From Eq. (6—14)

g £ Sa)?  [0.844(690)]

= 1437 MPa
S, 236

and from Eq. (6-15)

| Sy 1 0.844(690
h=—- lug(f ’)=——lug [#] = —0.1308
3 Se 3 236
From Eq. (6-16),
ca\ Vb (3351 1/01308
N = (F) = (m) = 68(10%) cycles

23



6-12

Figure 6-27

Fatigue diagram showing
various criferia of failure. For
each criterion, paints on or
"above” the respective line
indicate failure. Some point A
on the Goodman line, for
example, gives the srength 5,
as the limiting value of o,
comesponding fo the strength
5q, which, paired with &, is

the: limifing value of a,.

Alternating stmess o,

Fatigue Failure Criteria for Fluctuating Stress

AN /—"!"i&l-:l{l_.ﬁﬁg&f]liﬁ&

A
.

A" .
Cerber line

Soderberg line I \

Load line, slope r =5 /5

Modified Goodmaen line

ASME-elliptic line

0 A

L

Midrange stress a,

Five criteria of failure are diagrammed in Fig. 6-27: the Soderberg, the modified
Goodman, the Gerber, the ASME-elliptic, and yielding. The diagram shows that only
the Soderberg criterion guards against any yielding, but is biased low.
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The criterion equation for the Soderberg line is

Sa  Sm

B R L _

s, + 5, (6-40)
Similarly, we find the modified Goodman relation to be

Sa Sm

S Su

Examination of Fig. 6-25 shows that both a parabola and an ellipse have a better
opportunity to pass among the midrange tension data and to permit quantification of the
probability of failure. The Gerber failure criterion is written as

Sa , (Sm )2
—+|—] =1 (6-42)
Se ( Sut

and the ASME-elliptic is written as

Sa\o . (Sa\
(5)+(5) - o

The Langer first-cycle-yielding criterion is used in connection with the fatigue
curve:

Sﬂ ‘|‘ Sm — S'll_l [6_442]‘5



The stresses noy and neoy can replace S; and Sp. where 1 is the design factor or factor
of safety. Then, Eq. (6—0), the Soderberg line, becomes

|
Soderberg % + E;—m == (6—-45)
& ¥

Equation {6—41), the modified Goodman line, becomes

€1 e
mod-Goodman —= + 2 = — (6-46)
Se Sur ]
Equation (6—42), the Gerber line, becomes
2
Gerber 2% 4+ (””’") =1 (6-47)
Se Sut

Equation (6—43), the ASME-elliptic line, becomes

2

ASME-elliptic (””‘“ ) + (ﬁ) —1 (6-48)
S. S

Langer static yvield o, + oy = .*_:
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The failure criteria are used in conjunction with a load line, r = 54 /5x = ga/am.
Frincipal intersections are tabulated in Tables 66 to &8. Formal expressions for
fatigue factor of safety are given in the lower panel of Tables 66 to 6—5. The first row
of each table corresponds to the fatigue crterion, the second row is the static Langer
criterion, and the third row comresponds to the intersection of the static and fatigue

Table 6-6 Intersecting Equations Intersecfion Coordinates

Amplitude and Steady 5 S | rSaSur
Coordinates of Strength T E Sa = For+ 5%
and Important , 5 5,
_ . Load liner = — = —
Intersections in First S r
Cluadrant for Medified 5_&_'_& _1 _r5
Goodman and Langer S & S
Failure Criteria 5 _ 5
Lnudhner_a S = 7
S S _ (5 — &) S
§75, ) =g s,
5 5, .
S—F+E=] 'i-=5;—5rnrrcrir=5a.-"5m
Fatigue factor of safety
ni = - ! e
[ _|_ -
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Table 6-8

Amplitude and Steady
Coordinates of Strength

and Important
Intersections in First
Chuadrant for ASME-
Elliptic and langer
Failure Criteria

Intersecfing Equafions Intersecfion Coordinates

s\ (s [ resse
(E) +(E) B N E T
Load line r = 5,/ 5, S = —

55- Sm c _ rS
575" T T4r
Lload line r = 5,/ 5, S = ] ?—r

s\’ _ . 258

% CT T g4
5& Sm _
T TT — = 3y — g, Mot = 3/
575 S = Sy = S S
Fatigue factor of safety

-

(0 / 5o + {0/ S,)
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Table 6-7

Amplitude and Steady
Ceordinates of Strength
and Important
Intersections in First
Cluadrant for Gerber
and Langer Failure
Criteric

Intersecting Equafions Intersection Coordinates

S C RS- RN e
load fner = == S0 =2

% ?"T =1 5 = ffr

oad finer = 2= Sa =75

BE R E Y
%+%=] & =5 — Snileit = &/ Gn

Fatigue factor of safety

1
HF—E(

St

o

.

OUg

5

[_1 +"r'llll + (25.:::;)2 } o > 0
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