King Saud University

Department of Mathematics
Final Exam
205-Math
2 Semester (1439/1440)
Question1 $\left(4^{\circ}\right)$. Find a point Q on the surface $S: z=3 x^{2}-x+y^{2}-\frac{1}{36}$ at witch the normal line L is perpendicular to the plane $P: \frac{x}{2}-\frac{y}{3}-z-\frac{1}{36}=0$.

Question2 (4°. Find the point(s) on the curve $x^{2} y=54$ nearest the origin.
Question3 (5 5°. (a) Study the continuity of the function $f(x, y)=\left\{\begin{array}{cl}\frac{5 x^{2} y-3 y^{3}}{x^{2}+y^{2}} & ,(x, y) \neq(0,0) \\ 0 & ,(x, y)=(0,0)\end{array}\right.$ at the origin and then: (b) Find the derivatives of the above function with respect to x and with respect to y at the origin.
Question4 (5°. Find the value of $\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}$ at the point (π, π, π) if z is defined as a function of x and y by the equation: $\sin (x+y)+\sin (y+z)=\cos (x / 4+z / 4)$

Question5 (4°. Set up the integral for finding the volume of the solid bounded by the surfaces:

$$
x=0, y=0, z=2 \text { and } 2 x+y+z-6=0 .
$$

Question6 (4°). Find the surface area of the surface $z=y^{2}$ over the triangle with vertices:

$$
(0,0,0),(0,2,0),(2,2,0)
$$

Question7 (4). Find $\lim _{n \rightarrow \infty} x_{n}$ if: (a) $x_{n}=(-1)^{n} \sqrt[n]{n 2^{n+1}}$ (b) $x_{n}=\left(\frac{e^{n}+1}{3^{n}}\right) \cos (\pi n)$
Question8 (4°). Check whether the following series is absolutely convergent, conditionally convergent or divergent: (a) $\sum_{n=1}^{\infty}(-1)^{n} \sqrt[n]{n 2^{n+1}} \quad$ (b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{\pi^{n}}$

Question9 (6°. . (a) Find the power series representation for the function $f(x)=\frac{2}{(1+x)^{3}}$ and write the domain of convergence.
(b) Find the sum of the number series $\sum_{n=2}^{\infty} \frac{(-1)^{n} n(n-1)}{3^{n}}$

