King Saud University

Department of Mathematics
Final Exam
205-Math
2 Semester (1439/1440)
Question1 (4 ${ }^{\circ}$. Find parametric equations of the tangent line to the curve

$$
r(t)=\left(t^{3}+3\right) i+\left(4-2 t^{3}\right) j+\left(t^{2}-4\right) k \text { at the point } P(2,6,-3)
$$

Question2 (4 4°. Decide whether the function $f(x, y)=\frac{x^{4}+y^{4}}{x^{2}+y^{2}}$ has a limit at the origin.
Question3 (4°). If $z=f(x, y)$ is defined implicitly as a function of x and y by the equation $x e^{y}+y e^{z}=2+3 \ln 2-2 \ln x$, then find the gradient of z at the point $(1, \ln 2)$.

Question4 (4 4°. find the point(s) on the curve $y=x^{2}-4 x+5$ nearest the point $P(2,0)$.
Question5 (4°). Convert the following polar integral to cartesian and find its value:

$$
\int_{0}^{\pi / 2} \int_{0}^{1} r^{3} \sin \theta \cos \theta d r d \theta
$$

Question6 (4 4°. Find the surface area of the surface $z=y^{2}$ over the triangle in $x y$-plane with vertices $(0,0),(0,2),(2,2)$.

Question7 (4°). Find the volume of the solid bounded by the surfaces: $z=\sqrt{x^{2}+y^{2}}$ and $z=2$.
Question8 (3°). Find $\lim _{n \rightarrow \infty} x_{n}$ if: (a) $x_{n}=\frac{(-1)^{n} \sqrt{n} \sin \sqrt{n}}{n+1}$ (b) $x_{n}=\frac{(-1)^{n}+\sqrt[n]{4^{n^{2}} n}}{4^{n}}$

Question9 (4°). Check whether the following series is absolutely convergent, conditionally convergent or divergent: (a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt[3]{n}}{n+1} \quad$ (b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{e^{n}}{n!} \quad$ (c) $\sum_{n=1}^{\infty} \frac{e^{n}}{1+e^{\frac{1}{2}{ }^{n}}}$

Question $10\left(5^{\circ}\right)$. (a) Find the sum of the function series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}$ and its radius and interval of convergence. (b) Find the sum of the number series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n 2^{n}}$

