King Saud University

Department of Mathematics		
Final Exam	205-Math	2 Semester (1439/1440)

Question1 (4°) . Find parametric equations of the tangent line to the curve

$$r(t) = (t^3 + 3)i + (4 - 2t^3)j + (t^2 - 4)k$$
 at the point $P(2,6,-3)$

Question2 (4°). Decide whether the function $f(x, y) = \frac{x^4 + y^4}{x^2 + y^2}$ has a limit at the origin.

Question3 (4°). If z = f(x, y) is defined implicitly as a function of x and y by the equation

 $xe^{y} + ye^{z} = 2 + 3\ln 2 - 2\ln x$, then find the gradient of z at the point (1, ln 2).

Question4 (4°). find the point(s) on the curve $y = x^2 - 4x + 5$ nearest the point P(2,0).

Question5 (4°) . Convert the following polar integral to cartesian and find its value:

$$\int_{0}^{\pi/2} \int_{0}^{1} r^{3} \sin \theta \cos \theta \, dr d\theta$$

Question6 (4°). Find the surface area of the surface $z = y^2$ over the triangle in *xy*-plane with vertices (0,0), (0,2), (2,2).

Question7 (4°). Find the volume of the solid bounded by the surfaces: $z = \sqrt{x^2 + y^2}$ and z = 2.

Question8 (3°). Find
$$\lim_{n \to \infty} x_n$$
 if: (a) $x_n = \frac{(-1)^n \sqrt{n} \sin \sqrt{n}}{n+1}$ (b) $x_n = \frac{(-1)^n + \sqrt[n]{4^n} n}{4^n}$

Question9 (4°) . Check whether the following series is absolutely convergent, conditionally

convergent or divergent: (a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt[3]{n}}{n+1}$$
 (b) $\sum_{n=1}^{\infty} (-1)^n \frac{e^n}{n!}$ (c) $\sum_{n=1}^{\infty} \frac{e^n}{1+e^{\frac{1}{2}n}}$

Question 10 (5°). (a) Find the sum of the function series $\sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1}$ and its radius and interval

of convergence. (b) Find the sum of the number series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n 2^n}$