King Saud University Department of Mathematics

Final Home Assignment
280-Math
2Semester (1440/1441)

Question1 (2+1). (a) Decide whether the series $\sum_{n=1}^{\infty} 2^{(-1)^{n}-n}$ is convergent or divergent.
(b) Find $\lim _{n \rightarrow \infty} x_{n}$ if $x_{n}=2^{(-1)^{n}-n}$ or show that it DNE.

Question2 (2+2). (a). Show that if $f(x)$ is a continuous function on $[a, b]$ and

$$
f(x)>0 \quad \forall x \in[a, b] \text {, then } \exists \alpha \in \mathfrak{R} \text { such that } \alpha>0 \text { and } f(x) \geq \alpha \quad \forall x \in[a, b] .
$$

(b) Show that the part (a) maybe not true in that case when the interval $[a, b]$ is open.

Question3 (2+2). (a) Let a and $b \in \mathfrak{R}$. Show that the function $f(x)=x^{2}$ is uniformly continuous on $[a, b]$
(b) show that the function $f(x)=x^{2}$ is not uniformly continuous on \mathfrak{R}.

Question4 (3). Calculate $\lim _{n \rightarrow \infty} x_{n}$ of the number sequence $x_{n}=\int_{0}^{2} \frac{n^{2} x^{2}+\sin ^{2} n x}{n^{2}} d x$.
(With explanation of each step).

Question5 (2+2+2). (a) Find the power series representation of the function $f(x)=\ln (2+x)$
(b) find the interval of convergence of the resulting power series.
(c) Use parts (a) and (b) to get the following equality

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}=\ln 2
$$

