Expand function in Legendre polynomials on the interval [-1,1]

Asked 1 year, 11 months ago Active 26 days ago Viewed $2 k$ times

Expand the following function in Legendre polynomials on the interval $[-1,1]$:

$$
f(x)=|x|
$$

The Legendre polynomials $p_{n}(x)$ are defined by the formula :

$$
p_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{2}
$$

for $n=0,1,2,3, \ldots$
My attempt :
we have using the fact that $|x|$ is an even function.

$$
\begin{gathered}
a_{0}=\frac{2}{\pi} \\
a_{n}=\frac{2}{\pi} \int_{-1}^{1} x \cos (n x) d x
\end{gathered}
$$

Then what is the next step ?

```
special-functions orthogonal-polynomials legendre-polynomials
```

edited Nov 29 '17 at 8:55

asked Nov 22 '17 at 13:03
\% user326307
㫜 28511

You have edited this, removed your original question and turned it in to a brand new question. This doesn't work well with existing answers to your original question. It would be better to add an entirely new question. PM. Nov 28 '17 at 11:35

2 Answers

$$
f(x)=\sum_{n=0}^{\infty} a_{n} P_{n}(x)
$$

See for example here for more information.
Another very useful reference (in general) is Abramowitz and Stegun's Handbook of Mathematical Functions where you will find chapters on Legendre functions and orthogonal polynomials.

We know that the Fourier-Legendre series is like

$$
f(x)=\sum_{n=0}^{\infty} C_{n} P_{n}(x)
$$

where

$$
C_{n}=\frac{2 n+1}{2} \int_{-1}^{1} f(x) P_{n}(x) d x
$$

So now we are going to calculate the result of

$$
\frac{2 n+1}{2} \int_{-1}^{1}|x| P_{n}(x) d x
$$

As $|x|$ is an even function, and the parity of $P_{n}(x)$ depends on the parity of n, We can write

$$
\int_{-1}^{1}|x| P_{n}(x) d x
$$

as

$$
\int_{-1}^{1}|x| P_{2 k}(x) d x \quad k=0,1,2 \ldots
$$

and

$$
\begin{gathered}
\int_{-1}^{1}|x| P_{2 k}(x) d x \\
=\int_{-1}^{0}-x P_{2 k}(x) d x+\int_{0}^{1} x P_{2 k}(x) d x \\
=2 \int_{0}^{1} x P_{2 k}(x) d x
\end{gathered}
$$

we get

$$
\begin{gathered}
2 \int_{0}^{1} x P_{2 k}(x) d x \\
=2\left(\frac{2 k+1}{4 k+1} \int_{0}^{1} P_{2 k+1}(x) d x+\frac{2 k}{4 k+1} \int_{0}^{1} P_{2 k-1}(x) d x\right)
\end{gathered}
$$

As

$$
\int_{0}^{1} P_{n}(x) d x= \begin{cases}0 & n=2 k \\ \frac{(-1)^{k}(2 k-1)!!}{(2 k+2)!!} & n=2 k+1\end{cases}
$$

We get

$$
\begin{aligned}
C_{2 k}=(2 k+1) & \frac{(-1)^{k}(2 k-1)!!}{(2 k+2)!!}+n \frac{(-1)^{k-1}(2 k-3)!!}{(2 k)!!} \\
& = \begin{cases}\frac{1}{2} & k=0 \\
\frac{(-1)^{k+1}(4 k+1)}{2^{2 k}(k-1)!} \frac{(2 k-2)!}{(k+1)!} & k>0\end{cases}
\end{aligned}
$$

So

$$
|x|=\frac{1}{2}+\sum_{k=1}^{\infty} \frac{(-1)^{k+1}(4 k+1)}{2^{2 k}(k-1)!} \frac{(2 k-2)!}{(k+1)!} P_{2 k}(x)
$$

