Sheet-9

Q. 1 Use Green's theorem to evaluate the line integral
(i) $\oint_{C} y^{2} d x+3 x y d y$, where C is the closed curve which is the boundary of the region bounded by the graphs of the equations $y=x^{\frac{3}{2}}$ and $y^{2}=x$.

Answer: $\frac{1}{8}$.
Q. 2 Evaluate the surface integreal

$$
\iint_{S}\left(x^{2}+z^{2}\right) d S
$$

where S is the surface of the graph of $x^{2}+y^{2}-z^{2}=0$ with $1 \leq z \leq 4$.
Answer: $\frac{45 \sqrt{2}}{4} \pi$.
Q. 3 If $\vec{F}=-x i-y j+z k$ and S is the portion of the graph $2 z=x^{2}+y^{2}$ cut off by the planes $z=1$ and $z=2$, find the flux of \vec{F} through the surface S.

Answer: 18π.
Q. 4 If $\vec{F}=2 x i-y j-z k$ and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=4$, verify the Divergence theorem.
Q. 5 Use Diveregence theorem to find the flux of the force $\vec{F}=y i-x j+z k$ through the surface S of the region bounded by the graphs of $3 z=4-x^{2}-y^{2}$ and $z=\sqrt{x^{2}+y^{2}}$.

Answer: $\frac{\pi}{2}$.
Q. 6 Let $\vec{F}=-y i+x j-z k$ and S be the surface of the paraboloid $z=$ $1+x^{2}+y^{2}$ inside the cylinder $x^{2}+y^{2}=1$. Evaluate the surface integral

$$
\iint_{S}(\nabla \times \vec{F}) \cdot \vec{n} d S
$$

Answer: 2π.
Q. 7 Let $\vec{F}=y i-x j+z k$ and S be the surface of the graph of $z=6-x^{2}-y^{2}$ inside the cylinder $x^{2}+y^{2}=2$. Verify the stokes theorem.

Answer: Each side is -8π.

