Sheet-8

Q.1 Evaluate the line integrals

(i) $\int_{C} \sqrt{y} dx - \sqrt{x} dy$, where C is the portion of the graph of xy = 1 from (1,1) to $(2,\frac{1}{2})$.

(ii) $\int_{C} e^{x} dy + y dx$, where C is the portion of the parabola $y = 1 + x^{2}$ from the point (0,1) to (1,2).

Answers: (i) $\sqrt{2}$, (ii) $\frac{10}{3}$.

Q.2 If $\overrightarrow{F} = -yi + xj$, find the work done by the force \overrightarrow{F} along the parabola $y = 2x^2$ from the point (-1, 2) to (1, 2).

Answer: $\frac{4}{3}$.

Q.3 Find the work done by the force $\overrightarrow{F} = -zi + yj + zk$ along the curve $x = t, y = t^2, z = t^3$ from the point (1, 1, 1) to (2, 4, 8).

Answer: 15.

Q.4 Check whether the following integrals are independent of pathe.

(i)
$$\int_C \frac{1}{x-2y} (dx-2dy)$$
, (ii) $\int_C (2x-y)dx-2xdy$, (iii) $\int_C x\cos ydy-y\sin xdx$.

Answers: (i) Yes, (ii) Yes, (iii) No.

Q.5 Evaluate the following integrals.

(i)
$$\int_{(0,0)}^{(i,\frac{\pi}{2})} y \cos(xy) dx + x \cos(xy) dy$$
, (ii) $\int_{(0,1)}^{(2,1)} e^{\frac{x}{y}} (\frac{1}{y} dx - \frac{1}{y^2} dy)$.

Answers: (i) 1, (ii) $e^2 - 1$.

Q.6 Use Green's theorem to find the area of the region bounded by the graphs of the equations $y = x^2$ and $y^2 = 8x$.

Answer: $\frac{8}{3}$.