## Sheet-8

Q. 1 Evaluate the line integrals
(i) $\int_{C} \sqrt{y} d x-\sqrt{x} d y$, where $C$ is the portion of the graph of $x y=1$ from $(1,1)$ to $\left(2, \frac{1}{2}\right)$.
(ii) $\int_{C} e^{x} d y+y d x$, where $C$ is the portion of the parabola $y=1+x^{2}$ from the point $(0,1)$ to $(1,2)$.

Answers: (i) $\sqrt{2}$, (ii) $\frac{10}{3}$.
Q. 2 If $\vec{F}=-y i+x j$, find the work done by the force $\vec{F}$ along the parabola $y=2 x^{2}$ from the point $(-1,2)$ to $(1,2)$.

Answer: $\frac{4}{3}$.
Q. 3 Find the work done by the force $\vec{F}=-z i+y j+z k$ along the curve $x=t, y=t^{2}, z=t^{3}$ from the point $(1,1,1)$ to $(2,4,8)$.

Answer: 15.
Q. 4 Check whether the following integrals are independent of pathe.
(i) $\int_{C} \frac{1}{x-2 y}(d x-2 d y)$,
(ii) $\int_{C}(2 x-y) d x-2 x d y$,
(iii) $\int_{C} x \cos y d y-y \sin x d x$.

Answers: (i) Yes, (ii) Yes, (iii) No.
Q. 5 Evaluate the following integrals.
(i) $\int_{(0,0)}^{\left(i, \frac{\pi}{2}\right)} y \cos (x y) d x+x \cos (x y) d y$,
(ii) $\int_{(0,1)}^{(2,1)} e^{\frac{x}{y}}\left(\frac{1}{y} d x-\frac{1}{y^{2}} d y\right)$.

Answers: (i) 1 , (ii) $e^{2}-1$.
Q. 6 Use Green's theorem to find the area of the region bounded by the graphs of the equations $y=x^{2}$ and $y^{2}=8 x$.

Answer: $\frac{8}{3}$.

