Sheet-5

Q.1 Evaluate the following integrals:

(i)
$$\int_{0}^{2} \int_{y}^{2} e^{x^{2}} dx dy$$
, (ii)
$$\int_{0}^{1} \int_{\sqrt{y}}^{1} \cos x^{3} dx dy$$
, (iii)
$$\int_{0}^{1} \int_{\sqrt{y}}^{1} e^{x^{3}} dx dy$$
, (iv)
$$\int_{0}^{1} \int_{x}^{1} \sec^{2} \left(\frac{\pi x}{4y}\right) dy dx$$
.

- Answers: (i) $\frac{1}{2}(e^4 1)$, (ii) $\frac{1}{3}\sin 1$, (iii) $\frac{1}{3}(e 1)$, (iv) $\frac{2}{\pi}$.
- **Q.2** Evaluate $\iint (x+y)dA$, where \mathcal{R} is the region bounded by the graphs of the equations $y^2 = x$ and $y = x^2$. Answer: $\frac{3}{10}$.
- **Q.3** Evaluate $\iint xydA$, where \mathcal{R} is the triangular region with vertices (-2,2), (1,1), (1,0).

 Answer: $-\frac{9}{24}$.
- **Q.4** Find the area of the region bounded by the graphs of the equations $y^2 = x$ and $y^2 = 2 x$. Answer: $\frac{8}{2}$.
- Q.5 Find the volume of the solid in the first octant bounded by the graphs of the equations $y^2 = z$ and x + 2y = 2. Answer: $\frac{1}{6}$.
- Q.6 Find the volume of the solid bounded by the graphs of the equations $z = x^2 + y^2$, $x^2 + y^2 = 1$ and z = 0.
- Q.7 Find the area of the region bounded by the graphs of the equations $r = 2\cos\theta$, $r = 2\sin\theta$. Answer: $\frac{\pi}{2} + 1$.
 - Q.8 Evaluate the integrals:

(i)
$$\int_{0}^{2} \int_{-\sqrt{2x-x^2}}^{\sqrt{2x-x^2}} (x^2+y^2)^{\frac{3}{2}} dy dx$$
, (ii) $\int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{1}{\sqrt{x^2+y^2}} dy dx$, (iii) $\int_{-\sqrt{3}}^{\sqrt{3}} \int_{1}^{\sqrt{4-x^2}} (x^2+y^2)^{\frac{3}{2}} dy dx$.

Answers: (i) $\frac{1024}{75}$, (ii) $\frac{\sqrt{2}\pi}{4}$, (iii) $\frac{\pi}{8}$.