Sheet-5

Q. 1 Evaluate the following integrals:
(i) $\int_{0}^{2} \int_{y}^{2} e^{x^{2}} d x d y$
(ii) $\int_{0}^{1} \int_{\sqrt{y}}^{1} \cos x^{3} d x d y$,
(iii) $\int_{0}^{1} \int_{\sqrt{y}}^{1} e^{x^{3}} d x d y$,
(iv) $\int_{0}^{1} \int_{x}^{1} \sec ^{2}\left(\frac{\pi x}{4 y}\right) d y d x$.

Answers: (i) $\frac{1}{2}\left(e^{4}-1\right), \quad$ (ii) $\frac{1}{3} \sin 1, \quad$ (iii) $\frac{1}{3}(e-1), \quad$ (iv) $\frac{2}{\pi}$.
Q. 2 Evaluate $\iint_{\mathcal{R}}(x+y) d A$, where \mathcal{R} is the region bounded by the graphs of the equations $y^{2}=x$ and $y=x^{2}$.

Answer: $\frac{3}{10}$.
Q. 3 Evaluate $\iint_{\mathcal{R}} x y d A$, where \mathcal{R} is the triangular region with vertices $(-2,2),(1,1),(1,0)$.

Answer: $-\frac{9}{24}$.
Q. 4 Find the area of the region bounded by the graphs of the equations $y^{2}=x$ and $y^{2}=2-x$.

Answer: $\frac{8}{3}$.
Q. 5 Find the volume of the solid in the first octant bounded by the graphs of the equations $y^{2}=z$ and $x+2 y=2$.

Answer: $\frac{1}{6}$.
Q. 6 Find the volume of the solid bounded by the graphs of the equations $z=x^{2}+y^{2}, x^{2}+y^{2}=1$ and $z=0$.

Answer: $\frac{\pi}{2}$.
Q. 7 Find the area of the region bounded by the graphs of the equations $r=2 \cos \theta, r=2 \sin \theta$.

Answer: $\frac{\pi}{2}+1$.
Q. 8 Evaluate the integrals:
(i) $\int_{0}^{2} \int_{-\sqrt{2 x-x^{2}}}^{\sqrt{2 x-x^{2}}}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d y d x, \quad$ (ii) $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{1}{\sqrt{x^{2}+y^{2}}} d y d x, \quad$ (iii) $\int_{-\sqrt{3}}^{\sqrt{3}} \int_{1}^{\sqrt{4-x^{2}}}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d y d x$.

Answers: (i) $\frac{1024}{75}, \quad$ (ii) $\frac{\sqrt{2} \pi}{4}$, \quad (iii) $\frac{\pi}{8}$.

