Exercise-9-

Given the following Payoff tables: where the table represents profits:

Alternatives	States of nature			
	S1	S2	S3	S4
A1	3	5	8	-1
A2	6	5	2	0
A3	0	5	6	4

State which can be chosen as the best act using:

- (a) Maximax, (b) Maximin, (c) Minimax regret (savage criterion),
- (d) Equal likelihood (Laplace),
- (e) Hurwicz Alpha criterion α =0.4

> Decision making under uncertainty.

a) Maximax:

Max(Max Ai) = Max(8, 6, 6) = 8

Decision : Select A1

b) Maxmin:

Max(Min Ai) = Max (-1, 0, 0) = 0

Decision: Select A2 or A3

c) Minimax:

Loss table				
Alternatives		States of	nature	
	S1	S2	S3	S4
A1	3	0	0	5
A2	0	0	6	4
А3	6	0	2	0

Min(Max Ai) = Min(5, 6, 6) = 5

Decision : Select A1

d) Laplace:

we associate equal probability for event say say 1/4

Expected pay-offs are:

$$E(A1) = \frac{3+5+8-1}{4} = \frac{15}{4} = 3.75$$

$$E(A2) = \frac{6+5+2+0}{4} = \frac{13}{4} = 3.25$$

$$E(A3) = \frac{0+5+6+4}{4} = \frac{15}{4} = 3.75$$

A1 and A3 has the maximum expected pay-off

Decision : Select A1 or A3

e) Hurwicz:

 $D=\alpha$ (Maximum in Ai) + $(1 - \alpha)$ (Minimum in Ai)

$$D(A1)=(0.4*8)+(0.6*-1)=2.6$$

$$D(A2)=(0.4*8)+(0.6*0)=2.4$$

$$D(A3)=(0.4*6)+(0.6*0)=2.4$$

D(A1) has the maximum

Decision : Select A1

Given: P(S1)=0.6, P(S2)=0.1, P(S3)=0.2, P(S4)=0.1 in table (A), Find:

(f)Expected Monetary Value (EMV),

(g)Expected Opportunity Loss (EOL),

(k)Expected Value of Perfect Information (EVPI)

Alternatives	States of nature			
	S1	S2	S3	S4
A1	3	5	8	-1
A2	6	5	2	0
A3	0	5	6	4
probability	0.6	0.1	0.2	0.1

> Decision making under Risk.

f) Expected Monetary Value (EMV)

EMV for A1 = (3*0.6)+(5*0.1)+(8*0.2)+(-1*0.1)=3.8

EMV for A2 = (6*0.6)+(5*0.1)+(2*0.2)+(0*0.1)=4.5

EMV for A3 = (0*0.6)+(5*0.1)+(6*0.2)+(4*0.1)=2.1

EMV for A2 is greater

Decision : Select A2

g) Expected Opportunity Loss (EOL),

Loss table				
Alternatives		States of	nature	
	S1	S2	S3	S4
A1	3	0	0	5
A2	0	0	6	4
А3	6	0	2	0
probability	0.6	0.1	0.2	0.1

ELO for A1 =
$$(3*0.6)+(0*0.1)+(0*0.2)+(5*0.1)=2.3$$

ELO for A2 = $(0*0.6)+(0*0.1)+(6*0.2)+(4*0.1)=1.6$

ELO for A3 =
$$(6*0.6)+(0*0.1)+(2*0.2)+(0*0.1)=4$$

EMV for A2 is least Decision : Select A2

h) Expected Value of Perfect Information (EVPI)

	Max. profit of each state (S)	probability	Expected value (= prob. * profit)
S1	6	0.6	3.6
S2	5	0.1	0.5
S 3	8	0.2	1.6
S4	4	0.1	0.4
Ex	Sum spected profit wit informatio	6.1	

EVPI = Expected profit with perfect information – max EMV

(H.W)

Example: An agricultural company wants to decide which commodity should stock to get maximum profit. It was supplied with the following information. The probability that the monsoon will **be excess, normal and deficient is 0.40,0.30 and 0.30**. The estimated profit or loss three commodities in respect of these different kinds of monsoon are:

Profit per 1 ton				
Monsoon Excess Normal Deficient				
Rice	10,000	-4,000	15,000	
Wheat	4,000	-3,000	8,000	
Maize	4,000	1,000	-1,000	

Determine the optimal decision under each of the following decision criteria and show how you arrived at it:

(a) Maximax, (b) Maximin, (c) Minimax regret (savage criterion), (d) Equal likelihood (Laplace), (e) Hurwicz Alpha criterion α =0.8, (f)EMV, (g)EOL, (k)EVPI.

> Decision making under uncertainty.

1. Maximax criterion (OPTIMISM)

17 17100111011 (01 11171120171)				
Alternative	Rice	Wheat	Maize	
Monsoon				
Excess	10,000	4,000	4,000	
Normal	-4,000	-3,000	1,000	
Deficient	15,000	8,000	-1,000	
MAX	15,000	8,000	4,000	

The maximum of column maxima is 15,000. Hence, the company should adopt Rice commodity.

2. Maximin criterion (pessimism).

Alternative	Rice	Wheat	Maize
Monsoon			
Excess	10,000	4,000	4,000
Normal	-4,000	-3,000	1,000
Deficient	15,000	8,000	-1,000
Min	-4,000	-3,000	-1,000

The maximum of column minima is -1,000. Hence, the company should adopt Maize commodity.

3. Minimax regret.

Alternative	Rice	Wheat	Maize
Monsoon			
Excess	10,000	4,000	4,000
Normal	-4,000	-3,000	1,000
Deficient	15,000	8,000	-1,000

Note: From the given payoff matrix, develop an opportunity-loss (or regret) matrix as follows:

- (i) Find the best payoff corresponding to each state of nature
- (ii) Subtract all other payoff values in that row from this value.

Opportunity Loss Table

Alternative	Rice	Wheat	Maize
Monsoon			
Excess	10,000-10,000=	10,000-4,000=	10,000-4,000=
	0	6,000	6,000
Normal	1,000-(-4,000)=	1,000-(-3,000) =	1,000-1,000=
	5,000	4,000	0
Deficient	15,000-15,000=	15,000-8,000 =	15,000-(-1,000)=
	0	7,000	16,000
MAX	5,000	7,000	16,000

Decision: Rice

4. Equal likelihood (Laplace).

Alternative	Rice	Wheat	Maize
Monsoon			
Excess	10,000	4,000	4,000
Normal	-4,000	-3,000	1,000
Deficient	15,000	8,000	-1,000
Expected (average)	$ \frac{1}{3}(10,000 \\ -4,000 \\ +15,000) \\ =7000 $	$\frac{1}{3}(4,000 - 3,000 + 8,000) = 3000$	$\frac{1}{3}(4,000 - 1,000 + 1,000) = 1333.33$

Decision: Rice

5. Hurwicz Alpha criterion α =0.8.

Alternative	Rice	Wheat	Maize
Monsoon			
Excess	10,000	4,000	4,000
Normal	-4,000	-3,000	1,000
Deficient	15,000	8,000	-1,000
weighted	0.8(15,000)+0.2(-	0.8(8,0000+0.2(-	0.8*4,000+0.2(-
average: D _i	4,000)= <mark>11,200</mark>	3,000)= 5,800	1,000)= 3000

 $D=\alpha$ (Maximum in column) + (1 - α)(Minimum in column)

Decision: Rice

> Decision making under Risk.

1. Expected monetary value (EMV).

Alternative	Rice	Wheat	Maize	probability
Monsoon				
Excess	10,000	4,000	4,000	0.4
Normal	-4,000	-3,000	1,000	0.30
Deficient	15,000	8,000	-1,000	0.30
EMV	0.4(10,000)+0.3(-	0.4(4,000)+0.3(-	0.4(4,000)+0.3(-	
	4,000)+0.3(15,000)=	3,000)+0.3(8,000)=	1,000)+0.3(1,000)=	
	<mark>7300</mark>	3100	1600	

Decision: Rice

2. Expected Opportunity Loss (EOL). Opportunity Loss Table

	Rice	Wheat	Maize	probability
Alternative				
Monsoon				
Excess	0	6,000	6,000	0.4
Normal	5,000	4,000	0	0.30
Deficient	0	7,000	16,000	0.30
EOL	0.3(5,000)	0.4(6,000)+0.3(4,000)+0.3(7,000)	0.4(6,000)+0.3(16,000)	
	=1,500	=5,700	=7,200	

Decision: Rice

3. Expected Value of Perfect Information (EVPI).

Alternative	Rice	Wheat	Maize	probability
Monsoon				
Excess	10,000	4,000	4,000	0.4
Normal	-4,000	-3,000	1,000	0.30
Deficient	15,000	8,000	-1,000	0.30
EMV	0.4(10,000)+0.3(-	0.4(4,000)+0.3(-	0.4(4,000)+0.3(-	
	4,000)+0.3(15,000)=	3,000)+0.3(8,000)=	1,000)+0.3(1,000)=	
	<mark>7300</mark>	3100	1600	

 $EVPI = Expected \ profit \ with \ perfect \ information - \max EMV = \sum_{i=1}^{m} p_i \ \max(r_{ij}) - \max EMV.$

$$EVPI = 10,000(0.4) + 0.3(1,000) + 0.3(15,000) - 7,300 = 8,800 - 7,300 = 1,500$$