6. CONTINOUSE PROBABILITY DISTRIBUTIONS

Q1) Find the moment generating function for the general normal distribution.

Q2) Show that the moment generating function of the random variable X which is Chi square distribution with v degree of freedom is $M(t)=(1-2 t)^{-v / 2}$.

Q3) If X_{1} and X_{2} be independent r.v. that are chi-square dis. with $v 1$ and $v 2$ degrees of freedom, respectively.
a) Show that the moment generating function of the random variable $Z=X_{1}+X_{2}$ is $M(t)=(1-2 t)^{-(v 1+v 2) / 2}$
b) What you can say about the distribution of the random variable Z .

Q4) Show that the mean and variance of gamma distribution are given by
a) $\mu=\frac{\alpha}{\beta}$
b) $\sigma^{2}=\frac{\alpha}{\beta^{2}}$

Q5) The grahp of chi-square distribution with 5 degrees of freedom is shown below. Find the values of x_{1}^{2}, x_{2}^{2} for which
a. The shaded area on the right $=0.05$,
b. The total shaded area $=0.05$,
c. The shaded area on the left $=0.10$,
d. The shaded area on the right $=0.01$.

Q6) The graph of t - distribution with 9 degrees of freedom is shown below. Find the values of t_{1}, t_{2} for which
a. The shaded area on the right $=0.05$,
b. The total shaded area $=0.05$,
c. The total unshaded area $=0.99$,
d. The shaded area on the left $=0.01$,
e. The area on the left of $t_{2}=0.90$.

Q7) Let X be an exponential random variable with parameter $\theta=\ln (3)$. Compute the following probability: $P(2 \leq X \leq 4)$.

Q8) Suppose the random variable has an exponential distribution with parameter $\theta=$ 1. compute $P(X>2)$.

Q9) What is the probability that a random variable X is less than its expected value, if X has an exponential distribution with parameter θ ?

Q10) Identify the distribution of the r.v. from the moment generating function
(a) $M_{x}(t)=\frac{1}{1-2 t}, t<1 / 2$
(b) $M_{x}(t)=e^{3 t+2 t^{2}}$
(c) X, Y independent, $M_{X+Y}(t)=\left(\frac{2}{2-t}\right)^{3}, t<\frac{1}{2}, Y \sim \operatorname{Exp}(2)$

Q11) X, Y independent, $M_{X+Y}(t)=\frac{e^{2 t}-1}{2 t-t^{2}}, \quad X \sim \operatorname{Exp}(2)$, what is the distribution of Y

