2. RANDOM VARIABLES, DISTRIBUTIONS AND EXPECTATIONS

2.1. DISCRETE DISTRIBUTIONS:

- Q1. Consider the experiment of flipping a balanced coin three times independently.
 - Let X= Number of heads Number of tails.
 - (a) List the elements of the sample space S.
 - (b) Assign a value x of X to each sample point.
 - (c) Find the probability distribution function of X.
 - (d) Find P($X \le 1$)
 - (e) Find P(X < 1)
 - (f) Find $\mu = E(X)$
 - (g) Find $\sigma^2 = Var(X)$

Q2. It is known that 20% of the people in a certain human population are female. The experiment is to select a committee consisting of two individuals at random. Let X be a random variable giving the number of females in the committee.

- 1. List the elements of the sample space S.
- 2. Assign a value x of X to each sample point.
- 3. Find the probability distribution function of X.
- 4. Find the probability that there will be at least one female in the committee.
- 5. Find the probability that there will be at most one female in the committee.
- 6. Find $\mu = E(X)$
- 7. Find $\sigma^2 = Var(X)$

Q3. A box contains 100 cards; 40 of which are labeled with the number 5 and the other cards are labeled with the number 10. Two cards were selected randomly with replacement and the number appeared on each card was observed. Let X be a random variable giving the total sum of the two numbers.

(i) List the elements of the sample space *S*.

(ii) To each element of *S* assign a value x of X.

(iii) Find the probability mass function (probability distribution function) of X.

- (iv) Find P(X=0).
- (v) Find P(X>10).
- (vi) Find $\mu = E(X)$
- (vii) Find $\sigma^2 = Var(X)$
- Q4. Let X be a random variable with the following probability distribution:

X	-3	6	9
f(x)	0.1	0.5	0.4

1) Find the mean (expected value) of X, $\mu = E(X)$. 2) Find $E(X^2)$

2) Find $E(X^2)$.

- 3) Find the variance of X, Var (X) = σ_X^2 .
- 4) Find the mean of 2X+1, $E(2X+1) = \mu_{2X+1}$.
- 5) Find the variance of 2X+1, Var(2X+1)= σ_{2X+1}^2 .

Q5. Which of the following is a probability distribution function:

(A)
$$f(x) = \frac{x+1}{10}$$
; x=0,1,2,3,4
(B) $f(x) = \frac{x-1}{5}$; x=0,1,2,3,4
(C) $f(x) = \frac{1}{5}$; x=0,1,2,3,4
(D) $f(x) = \frac{5-x^2}{6}$; x=0,1,2,3

Q6. Let X be a discrete random variable with the probability distribution function: f(x) = kx for x=1, 2, and 3.

- (i) Find the value of *k*.
- (ii) Find the cumulative distribution function (CDF), F(x).
- (iii) Using the CDF, F(x), find P (0.5 < X \leq 2.5).

Q7. Let X be a random variable with cumulative distribution function (CDF) given by:

$$F(x) = \begin{cases} 0 & , & x < 0 \\ 0.25, & 0 \le x < 1 \\ 0.6, & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

- (a) Find the probability distribution function of X, f(x).
- (b) Find P($1 \le X \le 2$). (using both f(x) and F(x))

(c) Find P(X>2). (using both f(x) and F(x))

Q8. Consider the random variable X with the following probability distribution function:

		Х	0	1	2	3			
		f(x)	0.4	С	0.3	0.1			
The value of c is									
(A) 0.125	(B) 0.	2	(C) ().1		(D) 0.125	(E) -	- 0.2

Q9. The probability distribution for company A is given by:

C = F =									
		Х	1	2	3]			
		f(x)	0.3	0.4	0.3				
and for company B is given by:									
	Y	0	1	2	3	4			
	f(y)	0.2	0.1	0.3	0.3	0.1			

Show that the variance of the probability distribution for company B is greater than that of company A.

2.2. CONTINUOUS DISTRIBUTIONS:

Q1. If the continuous random variable X has mean μ =16 and variance σ^2 =5, then P(X = 16) is

(A) 0.0625 (B) 0.5 (C) 0.0 Q2. Consider the probability density function: (D) None of these.

$$f(x) = \begin{cases} k\sqrt{x}, & 0 < x < 1\\ 0, & \text{elsewhere.} \end{cases}$$

1) The value of k is: (A) 1 (B) 0.5 (C) 1.5 (D) 0.667 2) The probability $P(0.3 < X \le 0.6)$ is, (A) 0.4647 (B) 0.3004 (C) 0.1643 (D) 0.4500 3) The expected value of X, E(X) is, (A) 0.6 (B) 1.5 (C) 1 (D) 0.667 [Hint: $\int \sqrt{x} \, dx = \frac{x^{3/2}}{(3/2)} + c$]

Q3. If the cumulative distribution function of the random variable X having the form:

$$P(X \le x) = F(x) = \begin{cases} 0 & ; x < 0 \\ x/(x+1) & ; x \ge 0 \end{cases}$$

Then

(1)
$$P(0 < X < 2)$$
 equals to
(a) 0.555 (b) 0.333 (c) 0.667 (d) none of these.
(2) If $P(X \le k) = 0.5$, then k equals to
(a) 5 (b) 0.5 (c) 1 (d) 1.5

Q4. For each function below, determine if it can be probability density function. If so, determine c.

a.
$$f_1(x) = c(2x - x^3)$$
; for $0 < x < \frac{5}{2}$
b. $f_2(x) = c(2x - x^2)$; for $0 < x < \frac{5}{2}$
c. $f_3(x) = c(2x^2 - 4x)$; for $0 < x < 3$
d. $f_4(x) = c(2x^2 - 4x)$; for $0 < x < 2$

Q5. The r.v. X has pdf
$$f(x) = \begin{cases} c(1-x^2); for -1 < x < 1\\ 0; otherwise \end{cases}$$

- a. What is the value of c.
- b. Find the following probabilities using the pdf of X:

i. P(X < 0)ii. $P\left(X \ge \frac{1}{2}\right)$ iii. $P\left(-\frac{1}{2} < X \le \frac{1}{2}\right)$ iv. P(X > 1)

c. Graph the pdf f(x). Show $P\left(X \ge -\frac{1}{2}\right)$ on the graph.

- d. What is the cdf of X.
- e. Find the probabilities in (b) using the cdf.

Q6. Suppose continuous r.v. X has density function $f(x) = \begin{cases} cx^2 ; for 1 < x < 2 \\ 0 ; otherwise \end{cases}$

- a. Find the value of the constant c. Graph the pdf.
- b. Find $P(X \ge \frac{3}{2})$. Show this probability on your graph.
- c. Find the cumulative distribution function of X. Graph the cdf.
- d. Find $P\left(X \ge \frac{3}{2}\right)$ using the cdf. Show this probability on the cdf graph.

Q7. Prove that $P(a \le X \le b) = F(b) - F(a)$ for continuous r.v. X. Explain why the equality signs make no difference.

Q8. For a continuous r.v. X, prove that $P(X \ge c) = 1 - F(c)$.

Q9. A system can function for a random amount of time X. If the density of X is given (in units of months) by

$$f(x) = Cxe^{-x/2}$$
; $x > 0$

- a. What is the probability that the system functions for at least 5 months.
- b. What is the probability that the system functions from 3 to 6 months.
- c. What is the probability that the system functions less than 1 month.

Q10. The cumulative distribution function of a continuous r.v. Y is given by

$$F(x) = \begin{cases} 0; for \ y \le 3\\ 1 - \frac{9}{y^2} \ ; for \ y > 3 \end{cases}$$

Find

a. $P(X \le 5)$. b. P(X > 8). c. the pdf of Y.

Q11. If the density function of the continuous r.v. X is $f(x) = \begin{cases} x ; 0 < x < 1 \\ 2 - x ; 1 \le x < c. \\ 0 ; o.w. \end{cases}$

- a. The value of c.
- b. The cumulative distribution function of X.
- c. P(0.8 < X < 0.6c).

d. Graph f(x) and F(x). Show the probability in (c) on both graphs.