Department of Statistics and Operations Research College of Science King Saud University

Probability (2)

Exercises

Editing by: Kholoud Basalim

Q1: A fair coin is tossed four times, and the sequence of heads and tails is observed.

- (a) List each of the 16 sequences in the sample space S
- (b) Let events A, B, C, and D be given by A = {at least 3 heads}, B = {at most 2 heads}, C = {heads on the third toss}, and D = {1 head and 3 tails}

If the probability set function assigns $\frac{1}{16}$ to each outcome in the sample space, find

(i) P(A),

- (ii) $P(A \cap B)$,
- (iii) P(B),

(iv) $P(A \cap C)$, **H.W**

- (v) P(D),
- (vi) $P(A \cup C)$ **H.W**
- (vii) $P(B \cap D)$. **H.W**

Q2: If P(A) = 0.4, P(B) = 0.5, and $P(A \cap B) = 0.3$, Find a. $P(A \cup B)$, b. $P(A \cap B')$, and c. $P(A' \cup B')$.

Q3: Given that $P(A \cup B) = 0.76$ and $P(A \cup B') = 0.87$, find P(A). H.W

Q4: A survey is made to determine the number of households having electric appliances in a certain city. It is found that 75% have radios (R), 65% have irons (I), 55% have electric toasters (T), 50% have (IR), 40% have (RT), 30% have (IT), and 20% have all three.

1) Find the probability that a household has at least one of these appliances ($P(R \cup I \cup T)$). 2) Find $P(R^c UT^c)$.

Q5: Let A and B be independent events with P(A) = 0.7 and P(B) = 0.2. Compute (a) $P(A \cap B)$, (b) $P(A \cup B)$, and (c) $P(A' \cup B')$.

Q6: Let P(A) = 0.3 and P(B) = 0.6. a. Find $P(A \cup B)$ when A and B are independent. b. Find P(A | B) when A and B are mutually exclusive.

Q7: Bowl B1 contains two white chips, bowl B2 contains two red chips, bowl B3 contains two white and two red chips, and bowl B4 contains three white chips and one red chip. The probabilities of selecting bowl B1, B2, B3, or B4 are 1/2, 1/4, 1/8, and 1/8, respectively. A bowl is selected using these probabilities and a chip is then drawn at random. Find

(a) P(W), the probability of drawing a white chip.

(b) P(B1 |W), the conditional probability that bowl B1 had been selected, given that a white chip was drawn.

Q8: Find the mean and variance for the following discrete distributions:

(c) $f(x) = \frac{4-x}{6}$, x = 1,2,3(a) $f(x) = \frac{1}{5}$, x = 5,10,15,20,25 H.W

Q9: Given E(X + 4) = 10 and $E[(X + 4)^2] = 116$, determine (a) Var(X + 4), (b) $\mu = E(X)$, and (c) $\sigma^2 = Var(X)$. Q10: If the mean and the variance of a binomial distribution are 10 and 5 respectively, then :

1) Determine the probability mass function.

2) Calculate the probability P(X = 0), P(X = 1) and P(X = 2).

3) Calculate the probability $P(X \ge 0)$.

Q11: **H.W** Suppose that the probability that a person dies when he or she contracts a certain disease is 0.4. A sample of 10 persons who contracted this disease is randomly chosen. Find the following

1) The probability that exactly 4 persons will die among this sample.

2) The probability that less than 3 persons will die among this sample.

3) The probability that more than 8 persons will die among this sample.

4) The expected number of persons who will die in this sample.

5) The variance of the number of persons who will die in this sample.

Q12: Let X have a Poisson distribution with a mean of 4. Find (a) $P(2 \le X \le 5)$. (b) $P(X \ge 3)$. **H.W**

Q13: Suppose that the probability of suffering a side effect from a certain flu vaccine is 0.005. If 1000 persons are inoculated, find the approximate probability that:

(a) At most 1 person suffers.

(b) 4, 5, or 6 persons suffer. H.W

SOLUTION

$$n = 1000 \\ p = 0.005 \\ \lambda = \mu = np = 1000(0.005) = 5$$

(a) Evaluate the formula of Poisson probability at k = 0, 1:

$$P(X = 0) = \frac{5^0 e^{-5}}{0!} = e^{-5} \approx 0.0067$$
$$P(X = 1) = \frac{5^1 e^{-5}}{1!} = 5e^{-5} \approx 0.0337$$

Use the addition rule for mutually exclusive events:

$$\begin{split} P(X \leq 1) &= P(X=0) + P(X=1) \\ &= 0.0067 + 0.0337 \\ &= 0.0404 \end{split}$$

ST	A	4	15
-			

Exercice 1

Qi'S = $\{HHHH, HHHT, HHTH, HHTHHH, THHT, THTH, HHn(S)=16A = \{ot \ least 3H\} = \{HHHH, HHHT, S\}B = \{dt \ most 2H\} = \{HHTT, HT\}n(B)=10$	TT, HT HH, HT HT, HTTH, HTTH, TT, HT HH, HTHT, HTTH, HTTT, TT, TT HH, TTHT, TTTH, TTTT, HHTH, HTHH, THHHJ $n(A) = 5$ HT, HTTH, THTH, THTH, THTT, TTTH, TTTTJ
C = [H on the third toss] = [HHHH, Hn] n(C) = 8	HHHT, HTHH, HTHT, THHH, THHT, TTHH, TTHT
D = [1H and 3T] = [HTTT, T	HTT, TTHT, TTTHJ n(D)=4
• p(A) = <u>5</u> 16	• $P(D) = \frac{4}{16} = \frac{1}{4} = 0.25$
• P(ANB) = $\frac{0}{16}$ = 0	• $P(AUC) = P(A) + P(C) - P(A \cap C) = \frac{1}{26} + \frac{1}{26} - \frac{1}{26} = \frac{9}{16}$
$AB = [J = \emptyset]$	· P(BAD) = + = + = 0.25
• P(B) = 1/16	
• $P(ANC) = \frac{4}{16} = \frac{1}{4} = -25$	
Q2: P(A)=0.4 P(B)=0.5	P(ANB)=0.3
• P(AUB) = P(A) + P(B) - P(ANE	$\bullet P(A' \cup B') = P(A \cap B)'$
= • 6	= 1 - p(AI)B) = 1 - 0.3
• $P(A \cap B') = P(A) - P(A \cap B)$	= 0.7
= 0 · 4 - 0 · 3 = 0 · 1	
Q3: PLAUB) = 0.76 PLAU	(B')= 0.87
. p(A) p(AUE	$p_{j} = p(A) + p(B_{j}) - p(A \cap B_{j})$
Considering Solutions	$= P(A) + [I - P(B)] - [P(A) - P(A \cap B)]$
	$= 1 - P(B) + P(A \cap B)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	= 1 + p(A) - p(AVB)
0.87	= 1 + P(A) - 0.76
TI PI	$AJ = 0.63 + \pm$

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} X \sim Bin \left(n = lo \ , \ \rho = o \cdot 4 \right) \\ f(x) = \left(\begin{array}{c} n \\ x \end{array} \right) \ \rho & \gamma & \gamma^{n-x} \\ f(x) = \left(\begin{array}{c} n \\ x \end{array} \right) \ \rho & \gamma^{n-x} \\ x = o_{1} \cdots , n \end{array} \qquad \Longrightarrow \quad f(x) = \left(\begin{array}{c} lo \\ x \end{array} \right) \left(o \cdot 4 \right)^{x} \left(o \cdot 6 \right)^{n-x} ; \quad x = o_{1} l_{1} \cdots lo \\ \end{array}$$

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} P(x) = \left(1 \\ x \end{array} \right) \left(o \cdot 4 \right)^{x} \left(o \cdot 6 \right)^{n-x} ; \quad x = o_{1} l_{1} \cdots lo \\ \end{array}$$

$$\begin{array}{l} P(x) = \left(1 \\ x \end{array} \right) \left(o \cdot 4 \right)^{x} \left(o \cdot 6 \right)^{n-x} ; \quad x = o_{1} l_{1} \cdots lo \\ \end{array}$$

$$\begin{array}{l} \begin{array}{l} P(x) = \left(1 \\ x \end{array} \right) \left(o \cdot 4 \right)^{x} \left(o \cdot 6 \right)^{n-x} ; \quad x = o_{1} l_{1} \cdots lo \\ \end{array}$$

$$\begin{array}{l} P(x) = \left(1 \\ x \end{array} \right) \left(o \cdot 4 \right)^{x} \left(o \cdot 6 \right)^{n-x} ; \quad x = o_{1} l_{1} \cdots lo \\ \end{array}$$

$$\begin{array}{l} P(x) = \left(1 \\ x \end{array} \right) \left(o \cdot 4 \right)^{x} \left(o \cdot 6 \right)^{n-x} ; \quad x = o_{1} l_{1} \cdots lo \\ \end{array}$$

$$\begin{array}{l} P(x) = \left(1 \\ x \end{array} \right) \left(o \cdot 4 \right)^{x} \left(o \cdot 6 \right)^{n-x} ; \quad x = o_{1} l_{1} \cdots lo \\ \end{array}$$

$$\begin{array}{l} P(x) = \left(1 \\ x \end{array} \right) \left(o \cdot 4 \right)^{n-x} \left(o \cdot 4 \right)^{n-x} (o \cdot 6 \right)^{n-x} ; \quad x = o_{1} l_{1} \cdots lo \\ \end{array}$$

$$\begin{array}{l} P(x) = \left(1 \\ x \end{array} \right) \left(o \cdot 4 \right)^{n-x} \left(o \cdot 4 \right)^{n-x} (o \cdot 6 \right)^{n-x} ; \quad x = o_{1} l_{1} \cdots lo \\ \end{array}$$

$$\begin{array}{l} P(x) = \left(1 \\ x \end{array} \right) \left(o \cdot 4 \right)^{n-x} \left(o \cdot 4 \right)^{n-x} (o \cdot 6 \right)^{n-x} ; \quad x = o_{1} l_{1} \cdots lo \\ \end{array}$$

$$\begin{array}{l} P(x) = \left(1 \\ x \end{array} \right) \left(o \cdot 4 \right)^{n-x} \left(o \cdot 6 \right)^{n-x} ; \quad x = o_{1} l_{1} \cdots lo \\ \end{array}$$

$$\begin{array}{l} P(x) = \left(1 \\ x \end{array} \right) \left(1 \\ x \end{array} \right)$$

$$\begin{array}{l} P(x) = \left(1 \\ x \end{array} \right) \left(1 \\ x \end{array} \right)$$

$$\begin{array}{l} P(x) = \left(1 \\ x \end{array} \right) \left(1 \\ x \end{array} \right)$$

$$\begin{array}{l} P(x) = \left(1 \\ x \end{array} \right) \left(1 \\ x \end{array} \right)$$

$$\begin{array}{l} P(x) = \left(1 \\ x \end{array} \right) \left(1 \\ x$$

$$\begin{aligned} & \mathbf{Q_{11}}^{\bullet} \quad \lambda = \mathbf{Y} \quad , \ \ f(\mathbf{x}) = \ \frac{\lambda^{\mathbf{x}} \ e^{-\lambda}}{x_1} \quad x = o_{11} \\ & P(2 \leq \mathbf{x} \leq 5) = P(\mathbf{x} = 2) + P(\mathbf{x} = 3) + P(\mathbf{x} = 4) + P(\mathbf{x} = 5) \\ & = \ e^{\mathbf{Y}} \left[\frac{\mathbf{y}^2}{2!} + \frac{\mathbf{y}^3}{3!} + \frac{\mathbf{y}^4}{4!} + \frac{\mathbf{y}^5}{5!} \right] \\ & = \ o \cdot 6936 \\ P(\mathbf{x} \geqslant 3) = 1 - P(\mathbf{x} < 3) = 1 - \left[P(o) + P(1) + P(2) \right] \\ & = \ o \cdot 76 \end{aligned}$$

$$\begin{aligned} Q_{12}: & P_{=0} \circ 5 & n_{=} | 0 \circ 0 \implies \lambda = np = | 0 \circ 0 (0 \circ 0 \circ 5) = 5 & f(v) = \frac{e^{-n} \lambda^{v}}{\chi_{1}^{v}} \quad j \; \chi_{=0} |_{j} = -- \\ q \cdot P(X \leq 1) = p(x = 0) + p(x = 1) \\ & = 0 \cdot 0 \circ 67 + 0 \cdot 0 \cdot 337 \\ & = 0 \cdot 0 \cdot 40^{v} \end{aligned}$$

$$b \cdot P(x = Y) + P(x = 5) + P(X = 6) = \\ & = 0 \cdot 1755 + 0 \cdot 1755 + 0 \cdot 1762 \\ & = 0 \cdot 4972 \end{aligned}$$

5 . Y

Q1: Let X be a continuous random variable on the interval (0, 1) with density function

$$f(x) = \begin{cases} 3x^2, & \text{for } 0 < x < 1\\ 0, & \text{elsewhere.} \end{cases}$$

Find the cumulative function F of X.

Q2: The proportion of time per day that all checkout counters in a supermarket are busy follows a distribution

$$f(x) = \begin{cases} kx^2(1-x)^9, & \text{for } 0 < x < 1\\ 0, & \text{elsewhere.} \end{cases}$$

What is the value of the constant k so that f(x) is a valid probability density function ?

Q3: For each of the following functions:

(a) $f(x) = \frac{x^3}{4}$, 0 < x < c , (b) $f(x) = \frac{3}{16}x^2$, -c < x < c H.W

(i) find the constant c so that f (x) is a pdf of a random variable X,

(ii) find the cdf, $F(x) = P(X \le x)$,

(iii) find μ and σ^2

Q4: Let $f(x) = \frac{1}{2}$, -1 < x < 1, be the pdf of X. Find the mean and variance of X.

Q5: Let X have an exponential distribution with mean $\,\theta>0$. Show that : P(X>x+y|X>x)=P(X>y)

Q6: Let X1,X2,X3,X4,X5 are independent and identically distribution exponential random variables with the parameter λ . Compute P{min(X1,X2,X3,X4,X5) $\leq a$ }

Maximum and minimum of independent random variables

- Let the random variables X₁,..., X_n be totally independent
- Denote: $X^{\min} := \min\{X_1, ..., X_n\}$. Then

$$P\{X^{mm} > x\} = P\{X_1 > x, \dots, X_n > x\}$$

= $P\{X_1 > x\} \cdots P\{X_n > x\}$

 $Q_3 = (\alpha) f(\alpha) = \frac{1}{2}$ = < X < c

1= [\$]

3 TEO E 3.5 E 1.2

$$Q_{1}: F(x) = P(X \leq x) = \int_{0}^{x} 3t^{2} dt = 3\frac{t^{3}}{3}\int_{0}^{x} = X^{3}$$

:. $F(x) = \begin{cases} 0 & x < \\ x^{3} & 0 \leq x < 1 \\ 1 & x \geq 1 \end{cases}$

 Q_2 : Recall that for fix to be a density function $\int f(x) dx = 1$ $\implies \int k x^2 (1-x)^q dx = 1$ Let $u=1-x \Rightarrow du=-dx$ if x=0→U=1 iii- mean (m) (E(x)) : x=1 -> U=0 $\int k (1-u)^2 (u^q - du = 1)$ $\int K [1-2u + u^{2}] u^{9} du = 1$ $k \int (u^{9} - 2u^{10} + u^{11}) du = 1$ $K \left[\frac{u^{10}}{10} - 2\frac{u^{11}}{11} + \frac{u^{12}}{12}\right] = 1$ $k \left[\frac{1}{10} - \frac{2}{11} + \frac{1}{12} \right] = 1$ $\frac{k}{660} = 1$:. (k = 660) (K)

	Exercise 2
$Q_3: (a) f(x) = \frac{x^3}{4} o < x < c$	
$i - \int_{-\infty}^{\infty} f(x) dx = 1$	$X = \frac{x}{2} \left[\frac{x}{2} z = \frac{y}{2} \frac{x}{2} \frac{y}{2} = \frac{x}{2} \frac{y}{2} \right] = \frac{x^2}{2} \left[\frac{x}{2} = \frac{x}{2} \frac{y}{2} \right]$
$\Rightarrow \int_{0}^{c} \frac{x^{3}}{y} dx = 1$	a Fax) = 1 x3 osx ci
$\Rightarrow \left[\frac{x^{4}}{16}\right]_{6}^{C} = 1$	14,X 1
$\Rightarrow \frac{c''}{16} = 1$	Q2: Recall that for for to be a density function
$\Rightarrow C^{4} = 16 \Rightarrow C = 2 $	I = nh fin-15 th the
$ii - \oint F(x) = p(X \le x) = \int^{x} \frac{t^{3}}{4} dt$	$= \left(\frac{t^{Y}}{16}\right)_{0}^{X} = \frac{X^{Y}}{16}$ where the second sec
iii - mean (μ) (E(x)) :	$o = N \neq I = \chi$
$\mu = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{\infty} x \frac{x^{3}}{y},$	$dx = \left[\frac{x^5}{2^{\circ}}\right]_{\circ}^2 = \frac{2^5}{2^{\circ}} = \frac{8}{5} = 1.6$
$\forall E[x^2] = \int_{-\infty}^{\infty} x^2 f(x) dx = \int_{-\infty}^{2} x^2 f(x) dx = \int_{-\infty}^{$	$\frac{x^{3}}{Y} dx = \left[\frac{x^{6}}{2Y}\right]_{0}^{2} = \frac{2^{6}}{2Y} = \frac{8}{3} = 2.667$
Variance (σ^2):	k find-an + mi) du er
$\sigma^{2} = E[x^{2}] - (E[x])^{2}$	$k \left[\frac{u^{\mu}}{u} - z \frac{u^{\mu}}{u} + \frac{u^{\mu}}{u} \right] = l$
$=\frac{3}{3}-(\frac{3}{5})$	
<u>75</u> - στιου γ	
(b) $f(x) = \frac{3}{16}x^2 - 6 < x < c$	$F(x) = \frac{x^3}{16} + \frac{1}{2}$
$i - \int_{-\infty}^{\infty} \frac{3}{76} x^2 dx = 1$	$y^{k} = 0$ $E(x^{2}) = \frac{12}{5}$
	8 = 2.1
$\frac{c^3}{16} + \frac{c^3}{16} = 1$	
$\frac{2C^3}{16} = 1 \implies C^3 = 8 =$	\Rightarrow C = 2 \Rightarrow

$$\begin{aligned} & \left| \begin{array}{c} x \sim U(\alpha, b) \quad j \quad \alpha < b \\ & x \sim U(\alpha, b) \quad j \quad \alpha < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha < x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-\alpha} \quad \alpha & x < b \\ & + f(x) = \frac{1}{b-$$

R

-

Exercises 3 - chapter 2

Discrete

Q1: For each of the following functions, determine the constant **c** so that f (x, y) satisfies the conditions of being a joint pmf for two discrete random variables X and Y:

(a) f(x, y) = c(x + 2y)(b) f(x, y) = c(x + y) x = 1,2 x = 1,2,3 x = 1,2,3 y = 1,2,3 y = 1,2,3y = 1,2,3

Q2: Let the joint pmf of X and Y be defined by:

$$f(x,y) = \frac{x+y}{32}$$
 $x = 1,2$ $y = 1,2,3,4$

(a) Find $f_X(x)$, the marginal pmf of X.

(b) Find $f_Y(y)$, the marginal pmf of Y.

(c) Find P(X > Y).

(d) Find P(Y = 2X).

(e) Find P(X + Y = 3).

(f) Find $P(X \le 3 - Y)$.

(g) Are X and Y independent or dependent? Why or why not?

(h) Find the means and the variances of X and Y, cov(x,y).

(i) Find $P(1 \le Y \le 3 | X = 1)$, $P(Y \le 2 | X = 2)$, and P(X = 2 | Y = 3).

(j) Find E(Y | X = 1) and Var(Y | X = 1).

Q3: H.W

Suppose that X_1 and X_2 are discrete random variables with joint pmf of the form

 $f(x_1, x_2) = c(x_1 + x_2)$ $x_1 = 0, 1, 2; x_2 = 0, 1, 2$

and zero otherwise. Find the constant c.

Q4:

If X and Y are discrete random variables with joint pmf

$$f(x, y) = c \frac{2^{x+y}}{x! y!} \qquad x = 0, 1, 2, \dots; y = 0, 1, 2, \dots,$$

and zero otherwise.

- (a) Find the constant c.
- (b) Find the marginal pdf's of X and Y.
 - (c) Are X and Y independent? Why or why not?

Q1: Let $f(x, y) = \frac{3}{16}xy^2$, $0 \le x \le 2$, $0 \le y \le 2$, be the joint pdf of X and Y.

(a) Find $f_X(x)$ and $f_Y(y)$, the marginal probability density functions.

(b) Are the two random variables independent? Why or why not?

(c) Compute the means and variances of X and Y.

(d) Find $P(X \leq Y)$.

Q2: Let X and Y have the joint pdf f (x, y) = cx(1-y), 0 < y < 1, and 0 < x < 1 - y. (a) Determine c.

(b) Compute $P(Y < X | X \le 1/4)$.

" Exercise 3 "

C-p(X>Y) + X+b2 3+K Y<X)q-2 y=1,2,3 Lep brus sex fi end se Y<X 91: a. f(x,y)=c(x+2y) X=1,2 $\sum_{x} \sum_{y} f(x,y) = 1$ f(1,1) + f(1,2) + f(1,3) + f(2,1) + f(2,2) + f(2,3) = 13C + 5C + 7C + 4C + 6C + 8C = 1 330 =1 =) C=133 d- Ply=2X1: b- f(x,y)= c(x+y) x=1,2,3 y=1,..., x $\sum_{x} \sum_{y} f(x, y) = 1$ f(1,1) + f(2,1) + f(2,2) + f(3,1) + f(3,2) + f(3,3) = 120 + 30 + 40 + 40 + 50 + 60 = 1 24 24 C=1 ⇒ C=1 2¥ 11 colt + (sel) + = (2= ++x) 9 $Q_2:$ $f(x,y) = \frac{x+y}{32}$ $X=1_{32}$ $y=1_{32},3,4$ a - fx(x); $f(x) = \sum_{x} f(x,y) = \sum_{x=1}^{2} \frac{x+y}{32}$ 14-E3X19-7 $= \frac{X+1}{32} + \frac{2+X}{32} + \frac{X+3}{32} + \frac{X+4}{32}$ $= \frac{4x+10}{32}$: $f(x) = \frac{4x + 10}{32}$; x = 1, 2b- fyig): $f(y) = \sum_{x} f(x, y) = \sum_{x} \frac{x+y}{32}$ $=\frac{1+y}{32}+\frac{2+y}{32}$ $=\frac{3+2y}{32}$ $f_{Y}(y) = \frac{3+2y}{3} \quad j = \frac{1}{2}$

" Esercise 3 "

c-p(X>Y): x=1,2 y=1,2,3,4 X>Y => true if x=2 and y=1 costant p(X>Y) = f(2,1) $=\frac{2+1}{3}=\frac{3}{5}=0.09375$ -d- plx++=31: Y=2X d - P(Y=2X): y=2 = 2(1) , 4 x=1 J= Y = 2(2) 4 x= 48+x) = (e, x) + - d P(Y=2x) = f(1,2) + f(2,4) $=\frac{1+2}{22}+\frac{2+4}{22}$ $= \frac{3}{32} + \frac{6}{32} = \frac{9}{32} = 0.28125 (202) + (302) + (102) + ($ e- p(X+Y=3). X+Y=3 = 2 1/2 3X if x=1 1 y=2 p(X+Y=3) = f(1,2) + f(2,1)X = 2 1=1 $=\frac{1+2}{12}+\frac{2+1}{22}$ $=\frac{3}{32}+\frac{3}{32}=\frac{6}{36}=0.1875$ for Z for = Z 11 $\oint - \rho(X \leq 3 - Y)$: X63-Y X+Y <3 $P(X \leq 3-Y) = f(1,1) + f(1,2) + f(2,1)$ ()+() <3 d+x = = 쇞 + 뜻 + 왲 $1+2 \leq 3$ $2+1 \leq 3$ $2+1 \leq 3$ = 8 = 4 = 0.25 9- X and Y independent if f(x, y) = f(x) f(y) : f(x,y) = f(x)f(y) $\frac{x+y}{3_2} \neq \frac{4x+10}{3_2} \cdot \frac{3+2y}{3_2}$ President i the start : : X and Y not independent (dependent)

1- P[14] < 31 x=11 - 2 F(31 x=1) h- mean : $P_x = E[x] = \sum x f(x) = \sum_{x=1}^{2} x \cdot \frac{y_{x+10}}{32} = \begin{bmatrix} 1 & \frac{y_{x+10}}{32} + 2 \cdot \frac{y_{x+10}}{32} \end{bmatrix} = \frac{25}{16} = 1.5625$ $f'_{Y} = E[Y] = \sum_{y=1}^{\infty} yf(y) = \sum_{y=1}^{\infty} y \frac{3+2y}{32} = \left[1 \cdot \frac{3+2}{32} + 2 \cdot \frac{3+y}{32} + 3 \frac{3+6}{32} + y \frac{3+8}{32}\right] = \frac{45}{16} = 2 \cdot 8125$ $E[x^{2}] = \sum_{x} x^{2} f(x) = \sum_{x=1}^{2} x^{2} \frac{4x}{32} = \frac{43}{12}$ $E[Y^{2}] = \sum_{y} y^{2} f(y) = \sum_{y=1}^{q} y^{2} \frac{3+2y}{32} = \frac{145}{16} \frac{32\sqrt{2}}{32\sqrt{2}} \frac{32\sqrt{2}}{32\sqrt{2}} \frac{32\sqrt{2}}{32\sqrt{2}}$ Variance : $\sigma_{x}^{2} = E[x^{2}] - \mu_{x}^{2} =$ 1 - $=\frac{43}{16}-(\frac{25}{16})^2$ p(1421x=2) = 2 f(31x=2) $=\frac{63}{256}=0.246$ $\overline{\gamma}^2 = E[\gamma^2] - N_{\gamma}^2$ $=\frac{145}{16}-(\frac{45}{16})^2$ $=\frac{295}{256}=1.152$ Cov(X,Y) = E[XY] - E[X]E[Y] $E[xY] = \sum_{x} \sum_{y} xy f(x,y)$ $=\frac{35}{2}-\left(\frac{25}{16},\frac{45}{16}\right)$ $= \sum_{x=1}^{2} \sum_{y=1}^{4} x y \frac{x+y}{32}$ $=-\frac{5}{256}=-0.0195$ $= \begin{bmatrix} 2 \\ 32 \\ (1_{32}) \\ (1_{32}$ = 35 p (x=Y + S=x)t = (S=Y | S=X] q is PETISTS 3 + X = 1 = E F (X1) · Ettry

3

$$i = p(1 \le 1 \le 3 \le 1 \le 1) + \frac{3}{5^{-1}} + \frac{f(3)(x+1)}{f(x+1)}$$

$$= \frac{3}{5^{-1}} + \frac{f(3)(x+1)}{f(x+1)} + \frac{f(3)(x+1)}{f(x+1)}$$

$$= \frac{f(1+1)}{f(x+1)} + \frac{f(3)(x+1)}{f(x+1)} + \frac{f(3)(x+1)}{f(x+1)}$$

$$= \frac{f(1+1)}{f(x+1)} + \frac{f(3)(x+1)}{f(x+1)}$$

$$= \frac{2f(3)(x+1)}{f(x+1)} + \frac{f(3)(x+1)}{f(x+1)}$$

$$= \frac{2f(3)(x+1)}{f(x+1)} + \frac{f(3)(x+1)}{f(x+1)}$$

$$= \frac{2f(3)(x+1)}{f(x+1)} + \frac{f(3)(x+1)}{f(x+1)}$$

$$= \frac{1}{7^{-1}} + \frac{1}$$

$$j - E[\{Y | X = 1\} + \sum_{3}^{n} y \frac{1}{2} \frac{1}{(3, 2\pi)} \\ = \sum_{3=1}^{n} y \frac{1}{2} \frac{1}{(3, 2\pi)} \\ = [1 \cdot \frac{2^{n} y_{3}}{19(2\pi)}] + [2 \cdot \frac{3/2\pi}{19(2\pi)}] + [3 \cdot \frac{4'/2\pi}{19(2\pi)}] + [4 \cdot \frac{5/2\pi}{19(2\pi)}] \\ = \frac{1}{2^{n}} + \frac{4}{2^{n}} + \frac{12}{2^{n}} + \frac{2\pi}{19} \\ = \frac{1}{2^{n}} + \frac{4}{2^{n}} + \frac{12}{2^{n}} + \frac{2\pi}{19} \\ = \frac{1}{2^{n}} = \frac{2}{2^{n}} = 2 \cdot 2537 \\ V(Y | X = 1) = E[Y^{2} | X = 1] - (E[Y | X = 1])^{2} \\ = \frac{13\sigma}{19} - (\frac{2\sigma}{2\pi})^{2} \\ = \frac{55}{19} = 1 \cdot 22 \\ = \frac{55}{19} = 1 \cdot 22 \\ \sum_{n=0}^{n} \frac{5}{19} \frac{1}{19} + \frac{12}{19} + \frac{35}{19} + \frac{2\sigma}{19} \\ = \frac{1}{19} \\ C_{n}^{3} \int f(x_{10} x_{1}) \cdot C(x_{1}^{n} x_{n}) \\ x_{1} \cdot x_{n}^{1} \cdot C(x_{1}^{n} x_{n}) = 1 \\ \sum_{n=0}^{2} \frac{\pi}{2^{n}}} \frac{1}{2^{n}} \frac{1}{2^{n}} \frac{1}{2^{n}} \frac{1}{2^{n}} + \frac{12}{2^{n}} + \frac{35}{19} + \frac{2\sigma}{19} \\ C(s_{1}s_{1}) + C(s_{1}s_{2}) + C(s_{1}s_{1}) = 1 \\ \sum_{n=0}^{2} \frac{\pi}{2^{n}}} \frac{1}{2^{n}} \frac{1}{2^{n$$

$$\begin{aligned} Q_{1} & f_{(x_{3})} = c \frac{z^{x_{3}}}{x_{1(y_{1})}} & x_{x_{3}} | z_{2}, \dots & y_{x_{3}} | z_{2}, \dots & y_{x_{3}} | z_{1} | z_{$$

Q1:Let $f(x, y) = \frac{3}{16}xy^2$, $0 \le x \le 2$, $0 \le y \le 2$ be the joint pdf of X and Y. (a) Find $f_X(x)$ and $f_Y(y)$, the marginal probability density functions. (b) Are the two random variables independent? Why or why not? (c) Compute the means and variances of X and Y. H.W (d) Find P(X \le Y).

 $\textbf{Q2}{:}$ Let X and Y have the joint pdf $f(x,y)=x+y\;$, $0\leq x\leq 1\;$, $0\leq y\leq 1$.

(a) Find the marginal pdfs $f_X(\boldsymbol{x}) \, \text{ and } f_Y(\boldsymbol{y})$.

(b) show that $f(x, y) \equiv f_X(x)f_Y(y)$. Thus, X and Y are dependent.

Q3:Let $f(x, y) = 2e^{-x-y}$, $0 \le x \le y \le \infty$ be the joint pdf of X and Y. Find $f_X(x)$ and $f_Y(y)$, the marginal pdfs of X and Y, respectively. Are X and Y independent? H.W

Q4: Let X and Y be continuous random variables with a joint pdf of the form

 $f(x, y) = k(x + y) \qquad 0 \le x \le y \le 1$

and zero otherwise.

- (a) Find k so that f(x, y) is a joint pdf.
- (b) Find the marginals, $f_1(x)$ and $f_2(y)$.
- (c) Find the conditional pdf f(y|x).
- (d) Find the conditional pdf f(x|y).

1

P1: f(x,y): 3 xy2 0 x x 2 0 x y 2	Q2' forgar 12x30 Ett reget 150
(a) $f_x(x) = \int_{y}^{y} f(x,y) dy = \int_{16}^{2} \frac{3}{16} x y^2 dy = \frac{3}{16} x \left[\frac{y^3}{3}\right]_{0}^{2}$	$=\frac{3}{245}\times\frac{2^{3}}{3}=\frac{1}{2}; 0 \le 1 \le 2$
$f_{y}(y) = \int f(x,y) dx = \int_{16}^{2} \frac{3}{16} x y^{2} dx = \frac{3}{16} x y^{2} \left[\frac{x^{2}}{2} \right]$	$x^{2} = \frac{3}{16} y^{2} - \frac{z^{4}}{2} = \frac{3}{8} y^{2} ; o \leq y \leq 2$
(b) X and Y independent $\iff f(x, y) = f(x) f(y)$ $\frac{3}{16} \times y^2 = \frac{x}{2} \cdot \frac{3}{8} y^2$ $\frac{3}{16} \times y^2 = \frac{3}{16} \times y^2$	the product $f(x) \neq f(x) \Rightarrow x_1 = x_2$ dependent $f(x+y) \neq (x+y)$
:. X, Y independent	Holisque rea "
C $\mu_{x} = \int x f(x) dx = \int x \cdot \frac{x}{2} dx = \frac{x^{3}}{2 \cdot 3} \int_{0}^{2} = \frac{2^{3}}{6} =$	¥ 3
$E[x^{2}] = \int_{x} x^{2} f(x) dx = \int_{0}^{2} x^{2} \cdot \frac{x}{2} dx = \frac{x^{4}}{2 \cdot 4} \int_{0}^{2} = \frac{2^{4}}{2 \cdot 4} = \frac{x^{4}}{2 \cdot 4} = \frac{x^{4}}$	2
$\sigma_{x}^{2} = E[x^{2}] - \mu_{x}^{2} = 2 - \left(\frac{4}{3}\right)^{2} = \frac{2}{9}$	
$F_{y} = \int y \cdot f(y) dy = \int_{\frac{3}{8}}^{2} y^{3} dy = \frac{3}{8} \frac{y}{4} \int_{0}^{2} = \frac{3 \cdot 2}{8 \cdot 4}$	$=\frac{3}{2}$
$E[x^{2}] = \int y^{2} f(y) dy = \int^{2} y^{2} \cdot \frac{3}{8} y^{2} dy = \frac{3}{8} \frac{y^{5}}{5} \int^{2}_{0} \frac{y^{5}}{5} \frac{y^{5}}{5} \int^{2}_{0} \frac{y^{5}}{5} \frac{y^{5}}{5$	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \left[$
$e_{Y}^{2} = E[Y^{2}] - \mu_{Y}^{2} = \frac{12}{5} - (\frac{3}{2})^{2} = \frac{3}{20}$	
(a) $P(X \leq Y) = \iint_{x,y} f(x,y) dx dy$	Les I - les la se l
$= \int_{a}^{a} \int_{b}^{a} \frac{3}{16} x y^{2} dx dy$	9-2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$=\frac{3}{16}\int_{0}^{2}y^{2}\frac{x^{2}}{x}\Big _{0}^{3}dy$	to a free the set for the set
$=\frac{3}{16}\int_{2}^{2}\frac{y^{2}}{2}dy$	3=0
$=\frac{3}{16} + \frac{y^3}{2.5} \Big]_{0}^{2}$	ser is a fire the
= 3 252 = 3 +6 2.5 = 5	x, y ladgeordants, 20 often st. kw fer (20
(I) March Backelly	- Kholoud Basalim -

Francise Y

 $Q_{2}: f(x,y) = x+y \qquad 0 \le x \le 1 \qquad 0 \le y \le 1$ $\bigotimes f_{x}(w) = \int f(x,y) \, dy = \int (x+y) \, dy = \left[xy + \frac{y^{2}}{2} \right]_{0}^{1} = \left[x + \frac{1}{2} \right]$

The fator of x = xh = xh of x = xh of x = xh $a_{x}^{2} = E[x^{2}] - M_{x}^{2} = 2 - (\frac{y}{2})^{2} = \frac{2}{3} \frac{x}{2} + \frac{1}{2} + x$ $= \frac{x^{2}}{2} + \frac{1}{2}x + \frac{x^{3}}{6} \Big]_{0}^{1} = \frac{1}{2} + \frac{1}{2} + \frac{1}{6}$ A. The spectroled at a Q3: f(x,y)=2ex-y 0\$x\$y\$0 4. 4: 134. With 14. With 183 $f_{x}(x) = \int f(x,y) dy = \int_{y=x}^{\infty} 2e^{-x} e^{-y} dy$ A MALTAN = 2e^{-x} [-e⁻³][∞] the real of all all and all $= 2e^{-x} [o + e^{-x}]$ = 2 e^{-2x} ; $f_{y}(y) = \int f_{xy}(y) dx = \int^{3} 2e^{-x}e^{-y} dx$ Lett, Star 2 15 $= 2e^{-y} [-e^{-x}]^{3}$ = 2 e- [-e"+1] $= 2e^{-y} \left[1 - e^{-y} \right] = 2e^{-y} - 2e^{-2y} = 2e^{-y}$ x, y independent \iff $f(x,y) = f_x(x) f_y(y)$ 18 355 = 5 $2e^{x-y} \neq 2e^{2x} 2e^{y} [1-e^{-y}]$: X, Y not independent. Kholoud Bosalim (2)

$$Q_{q}: f(x_{0}y) \cdot k(x_{1}y) = ocx \leq y \leq 1$$

$$(\bigcirc \int_{y}^{1} \int_{x}^{1} f(x_{1}y) dx dy = 1$$

$$\int_{y}^{1} k \left[\frac{x^{2}}{2} + y x \right]_{0}^{3} dy = 1$$

$$\int_{y}^{1} k \left[\frac{x^{2}}{2} + y x \right]_{0}^{3} dy = 1$$

$$k \left[\frac{y^{3}}{2} + y^{3} dy \right]_{0}^{1} = 1$$

$$k \left[\frac{1}{2} + \frac{1}{3} \right] = 1$$

$$\vdots \left[\frac{1}{k - 2} \right]$$

$$(\bigcirc \int_{x}^{1} f(x_{1}y) dx dx = \int_{x}^{1} 2(x + y) dy = 2 \left[\frac{x^{2}}{2} + \frac{y^{2}}{2} \right]_{x}^{1} = 2 \left[(x + \frac{1}{2}) - (x^{2} + \frac{x^{2}}{2}) \right] = 2x + 1 - 3x^{2} \quad ; \quad o < x < 1$$

$$f_{y}(y) \cdot \int_{x}^{1} f(x_{1}y) dx = \int_{x}^{3} 2(x + y) dx = 2 \left[\frac{x^{2}}{2} + y^{2} \right]_{0}^{3} = 2 \left[\frac{x^{2}}{2} + y^{2} \right] - (o + o) \right] = 3y^{2} \quad ; \quad o < y < 1$$

$$(\bigcirc f(y|x) = \frac{f(x, y)}{h(x)} dx = \frac{2(x + y)}{2x + 1 - 3x^{2}}$$

$$(\bigcirc f(x|y) = \frac{f(x, y)}{h(y)} = \frac{2(x + y)}{2x + 1 - 3x^{2}}$$

Q1: Let $f(x, y) = \frac{3}{2}$, $x^2 \le y \le 1$, $0 \le x \le 1$, be the joint pdf of X and Y. (a) Find P $(0 \le X \le \frac{1}{2})$. (b) Find P $(\frac{1}{2} \le Y \le 1)$. (c) Find P $(X \ge \frac{1}{2}, Y \ge \frac{1}{2})$. (d) Are X and Y independent ? Why or why not?

Q2: Let $f(x, y) = \frac{4}{3}$, 0 < x < 1, $x^3 < y < 1$, zero elsewhere. (a) Find P(X > Y).

Q3: Let X and Y have the joint pdf f(x, y) = cx(1 - y), 0 < y < 1, 0 < x < 1 - y. (a) Determine c. (b) Compute $P(Y < X | X \le \frac{1}{4})$.

Q4: Let $f(x, y) = \frac{1}{40}$, $0 \le x \le 10$, $10 - x \le y \le 14 - x$, be the joint pdf of X and Y. (a) Find $f_X(x)$, the marginal pdf of X. (b) Determine $h(y \mid x)$, the conditional pdf of Y, given that X = x. (c) Calculate E(Y | x), the conditional mean of Y, given that X = x.

Q5: Letf(x, y) = $\frac{1}{8}$, $0 \le y \le 4$, $y \le x \le y + 2$, be the joint pdf of X and Y. **(a)** Find $f_X(x)$, the marginal pdf of X. **(b)** Find $f_Y(y)$, the marginal pdf of Y. **(c)** Determine h(y | x), the conditional pdf of Y, given that X = x. **(d)** Determine g(x | y), the conditional pdf of X, given that Y = y. **(e)** Compute E(Y | x), the conditional mean of Y, given that X = x. **(f)** Compute E(X | y), the conditional mean of X, given that Y = y.

" Exercises 5 " Q1: $f(x,y) = \frac{3}{2}$, $x^2 \le y \le 1$, $o \le x \le 1$ CI = that (post $\bigcirc \rho(\circ \leqslant \chi \leqslant \frac{1}{2})$ $f(x) = \int f(x,y) dy = \int_{2}^{1} \frac{3}{2} dy = \frac{3}{2} y''_{x^2} = \frac{3}{2} (1+x)^2$; •<X <1 $P(\circ \leq X \leq \frac{1}{2}) = \int_{-\frac{3}{2}}^{2} (1-X) dX = \frac{3}{2} \left[(X-\frac{3}{2}) \right]_{0}^{\frac{1}{2}} = \frac{11}{16}$ b P(½ ≤ Y ≤ 1): $f_{Y}(y) = \int f(x,y) dx = \int \frac{3}{2} dx = \frac{3}{2} x \Big]_{0}^{\sqrt{9}} = \frac{3}{2} \sqrt{y} ; o \leq y \leq 1$ $P(\frac{1}{2} < Y < 1) = \int \frac{1}{2} \sqrt{y} dy = \frac{3}{2} \frac{y^{\frac{3}{2}}}{3} \int_{1}^{1} = 1 - (\frac{1}{2})^{\frac{3}{2}} = 0.646$ © p(X≥½,Y>½): = $\int f(x,y) dx dy$ $= \iint_{x \to y} \frac{3}{2} dx dy$ 12 $=\int \frac{3}{2}(\sqrt{y}-\frac{1}{2}) dy$ SX XXXXXXX (1) X, Y independent ⇐> f(x, y) = f(x) f(y) $\frac{3}{2} = \frac{3}{2}(1-x^2) \cdot \frac{3}{2}\sqrt{y}$ [*x-1]xY = yb (E-1)x8 [(18 prost = 1x] : X, Y not independent $Q_2: f(x,y) = \frac{y}{2}, o< x < 1, x^3 < y < 1$ 36 [x-1]xp = Cp 4 359 @ p(X>Y) = [f(x,y) dy dx Jf(x,y) dxdy 9=1 = II = dy dx $=\int \frac{4}{3}y \Big]_{3}^{x} dx$ = 13 1 - Kholoud Basalin

$$Q_{3}: f(x,y): cx(1,y) \rightarrow ox(y,z) \rightarrow ox(x(1,y) + y).$$

$$\bigotimes \left[\int F(x,y) dx dy = 1 + cx(1,y) dx dy = 1 + cx(1,y) dy = 1 + cx(1,y)$$

 $Q_{y}: f(x,y) = \frac{1}{Y_{0}}$ $\sim < x < 10$, 10 - x < y < 1y - x(a) $f_{x}(x) = \int_{y} f_{xy}(x,y) dy = \int_{y}^{1/y-x} dy = \frac{1}{1/y} dy = \frac{1}{1/y} \int_{1/y-x}^{1/y-x} = \frac{1}{1/y} \left[(1/y-x) - (1/y-x) \right] = \frac{1}{1/y} = \frac{1}{1/y} ; \quad 0 < x < 10$ (b) $h(y|x) = \frac{f(x,y)}{f_y(x)} = \frac{1/40}{1/10} = \frac{1}{4}$ $\bigotimes_{y} E[Y|x] = \int_{y} y f(y|x) dy = \int_{10-x}^{14-x} y \frac{1}{4} dy = \left[\frac{y^2}{8}\right]_{10-x}^{14-x} = \frac{1}{8}\left[(14-x)^2 - (10-x)^2\right] = 12-x.$ y = 10 - x x 10 0 5 y 0 10 G 4= 14- x y 0 14 14 $Q_5: f(x,y) = \frac{1}{8}, o \leq y \leq y$, $y \leq x \leq y + 2$ $f_{x}(x) = \int f(x,y) dy =$ $f_{x}(x) = \int_{0}^{x} \frac{1}{8} dy = \frac{x}{8} \qquad \text{exx} < 2$ $\int_{x=8}^{x} \frac{1}{8} dy = \frac{1}{9} \qquad 2 < x < 9$ (2,0)3 $\int_{x-2}^{y} \frac{1}{8} dy = \frac{1}{8} [6-x] \quad Y \le x \le 6$ (0)-2) (b) $f_{Y}(y) = \int f(x,y) dx = \int \frac{y+2}{8} dx = \frac{1}{8} \times \int \frac{y+2}{4} = \frac{1}{8} [y+2-y] = \frac{1}{4} \quad : \quad 0 \ll y \ll Y$ $(f) h(y|\chi) = \frac{f(\chi,y)}{f_{x}(\chi)}$ (a) $g(x|y) = \frac{f(x,y)}{f_y(y)} = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{2}$

3 - Kholoud Basalim -

Q1: Let X be a random variable with pdf $f(x) = 4x^3$ if 0 < x < 1 and zero otherwise. Use the cumulative (CDF) technique to determine the pdf of the following random variable :

(a) $Y = X^4$ (b) $W = e^X$ (c) $Z = \ln X$

Q2: Let X be a random variable that is uniformly distributed , X~UNIF(0,1). Use the CDF technique to determine the pdf of the following:

(a)
$$Y = X^{\frac{1}{4}}$$

(b) $W = e^{-X}$ (H.W)
(c) $Z = 1 - e^{-X}$

Q3: The pdf of X is $f(x) = \theta x^{\theta-1}$, 0 < x < 1, $0 < \theta < \infty$. Let $Y = -2 \theta \ln X$. Use the cumulative (CDF) technique to determine the pdf of Y? **(H.W)**

Q4: Let X have a logistic distribution with pdf

$$f(x) = \frac{e^{-x}}{(1+e^{-x})^2}, \qquad -\infty < x < \infty$$

Show that

$$Y = \frac{1}{1 + e^{-\lambda}}$$

has a U(0, 1) distribution. (Use the CDF technique)

Q1: Let *X* have the pdf $f(x) = 4x^3$, 0 < x < 1. Find the pdf of $Y = X^2$. (Use direct transformation method)

Q2: Let *X* have the pdf $f(x) = xe^{-\frac{x^2}{2}}$, $0 < x < \infty$. Find the pdf of $Y = X^2$. (Use direct transformation method)

Q3: Let *X* have a gamma distribution with $\alpha = 3$ and $\beta = \frac{1}{2}$. Determine the pdf of $Y = \sqrt{X}$. (Use direct transformation method)

Q4: Rework (Question 1 in Exercise 6) using transformation methods (direct transformation method) **H.W Q5:** Rework (Question 2 in Exercise 6) using transformation methods (direct transformation method) **H.W**

Q6: Let X_1 , X_2 denote two independent random variables, each with a $\chi^2_{(2)}$ distribution. Find the joint pdf of $Y_1 = X_1$ and $Y_2 = X_1 + X_2$. Note that the support of Y_1 , Y_2 is $0 < y_1 < y_2 < \infty$. Also, find the marginal pdf of each of Y_1 and Y_2 . Are Y_1 and Y_2 independent?

Q7: Let X_1 and X_2 be independent random variables, each with pdf $f(x) = e^{-x}$, $0 < x < \infty$ Find the joint pdf of $Y_1 = X_1 - X_2$ and $Y_2 = X_1 + X_2$.

Q8: Let X and Y have joint pdf $f(x, y) = 4e^{-2(x+y)}$, $0 < x < \infty$, $0 < y < \infty$, and zero otherwise. Find the joint pdf of U = X/Y and V = X.

Q9: Suppose that X_1 and X_2 are independent gamma variables,

$$f(x_1, x_2) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} x_1^{\alpha - 1} x_2^{\beta - 1} e^{-x_1 - x_2} \qquad 0 < x_i < \infty$$

$$x_1 + x_2 \text{ and } Y_2 = \frac{x_1}{1 - x_2} \quad H.W$$

Find the joint pdf of $Y_1 = X_1 + X_2$ and $Y_2 = \frac{X_1}{X_1 + X_2}$. **H.W**

 $Q_1: f(x) = YX^3$, o< X<1, $Y = X^2$ D domain of Y: •<X<1 ⇒ •<X2<1 0<4<1 (2) Inverse function (invose transformation): Y=X2=> X=Vy " g (y) = Vy 3) derivative g'(y) with respect to y: $\frac{d}{dy}g'(y)=\frac{d}{dy}Vy$ = 1 1) Use the formula to find pdf (fy(y)): $f_{y}(y) = f_{x}(g'(y)) | \frac{d}{dy} g'(y) |$ fy (y) = 24 (Vy) 3 1 2 Vy fy(y)= 24 F; 0< y<1 Q_{2} , $f(x) = X e^{-\frac{X^{2}}{2}}$, $c < X < \infty$, $Y = X^{2}$ 1) domain of Y: 0<X<∞ ⇒ 0<4<∞ 2) inverse transformation: $Y = X^2 \implies g(y) = \sqrt{y}$ 3) derivative g'(y) with respect to y: $\frac{d}{dy}g'(y) = \frac{d}{dy}Vy = \frac{1}{2}Vy$ (Y) use the formula to find pdf of Y (fyly)): $f_{y}(y) = f_{x}(\bar{g}(y)) | \frac{d}{dy} \bar{g}(y) |$ = $\sqrt{y} e^{\frac{y}{2}} \frac{1}{2\sqrt{y}} \Rightarrow f_{y}(y) = \frac{1}{2} e^{\frac{1}{2}}$

" Exercises 7 "X last a (f al 200) emotop LX . O fr(x) = B X e Y He miomob (1) astro @ astro @ astro Notionationation (I) Y =X & X = Y D durivative . 5 (2) with respect 2 to y . 1 = "e = 1 = (e'z = 2 . Y to the bart of plantal alt all (1) 1(1) 1 (15'0) 1 + 5'0) 15 . 23 . 23

 $y \sim \exp(\lambda = 2)$

049500

1 Khobud Basalim

 $Q_3: X \sim gamma(a=3, B=\frac{1}{2}), Y=\sqrt{X}$ $f_{X}(x) = \frac{\beta^{\alpha} X^{\alpha-1} e^{-\beta X}}{\Gamma(\alpha)}; \quad \alpha \leq X < \infty$ $= \frac{\chi^2 e^{\frac{\chi}{2}}}{2^3 \Gamma_2} \quad j \quad 0 \leq \chi < \infty$ [domains of Y: 0 < X < 00 =) 0 < √x < 00 =) 0 < y < 00 2) inverse transformation: $Y = \sqrt{X} \Rightarrow X = Y^2$ " g [(y) = y2 3) derivative g'(y) with respect \$ to y : $\frac{d}{dy} \bar{g}'(y) = \frac{d}{dy} y^2 = 2y$ (1) Use the formula to find pdf of Y: $f_{y}(y) = f_{y}(g'(y)) | \frac{d}{dy} g'(y) |$ $=\frac{y^{4}e^{-\frac{y^{4}}{2}}}{2^{3}\Gamma_{2}}$. 2y $= \frac{y^5 e^{-\frac{y^2}{2}}}{2} \qquad ; \quad 0 \le y \le \infty$

"X =Y , 1>X>0 , "XY=(x)] 319 I' to mierrob () 12 12 00 6 12 120 12 120 [2] Inverse function (inverse boustomation) : EV=X - G=X=Y F1=(1) 2 + B deriverive 3"(1) with respect to 3 . ((1)) Ilse the formula to find phf (fyigs): $\frac{1}{2V\lambda} \left(\frac{1}{2V} \right) \Psi^{\lambda} = \left(\frac{1}{2V} \right)^{1}$ 12230 785 -035 [7] imerse transformation: I derived ive 3" (1) with respect to y : Et a "(2) = by t3 = Et a = (2)" o by is of the formula the find part of i (form) : to the two to the to th

Milasod budentil []

2 Kholoud Basalin

$$\begin{aligned} \begin{array}{l} \text{Progulal plif of } Y_{2}:\\ \frac{1}{4}(\frac{1}{2}) \cdot \int_{1}^{1} \frac{1}{4}(\frac{1}{2}) \cdot \int_{1}^{1} \frac{1}{4}(\frac{1}{2}) \\ &= \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \\ &= \frac{1}{4} \cdot \frac{1}{4} \\ &$$

$$\begin{array}{l} \begin{array}{l} \underbrace{Q_{g}}{}_{1}^{1} \left\{ (x_{1}y_{1} + q e^{2(x_{1}y)} \right), & e(x < e_{1} > e(x_{2} < v_{1} + q e^{2(x_{2}y)} \right), & e(x < e_{2} > e(x_{2} < v_{2} + q e^{2(x_{2}y)} \right), & e(x < e_{2} > e(x_{2} < e_{2} & e_{2} & e_{2} \\ & = \underbrace{(u_{1} \times u_{1}^{1} + u_{1}^{1} \times u_{1}^{1} \\ & = \underbrace{(u_{1} \times u_{1}^{1} + u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} \\ & = \underbrace{(u_{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} + u_{1}^{1} \times u_{1}^{1} + u_{1}^{1} \times u_{1}^{1} + u_{1}^{1} \\ & = \underbrace{(u_{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} + u_{1}^{1} \\ & = \underbrace{(u_{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} + u_{1}^{1} + u_{1}^{1} \\ & = \underbrace{(u_{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} + u_{1}^{1} + u_{1}^{1} + u_{1}^{1} \\ & = \underbrace{(u_{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} + u_{1}^{1} + u_{1}^{1} + u_{1}^{1} + u_{1}^{1} \\ & = \underbrace{(u_{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} + u_{1}^{1} + u_{1}^{1} + u_{1}^{1} + u_{1}^{1} \\ & = \underbrace{(u_{1} \times u_{1}^{1} \times u_{1}^{1} \times u_{1}^{1} + u_{1}^{1} + u_{1}^{1} + u_{1}^{1} + u_{1}^{1} + u_{1}^{1} \\ & = \underbrace{(u_{1} \times u_{1}^{1} \times u_{1}^{1} + u_{1}^{1} + u_{1}^{1} + u_{1}^{1} + u_{1}^{1} + u_{1}^{1} + u_{1}^{1} \\ & = \underbrace{(u_{1} \times u_{1}^{1} \times u_{1}^{1} + u_{1}^{1} \\ & = \underbrace{(u_{1} \times u_{1}^{1} + u_{1}^{1}$$

I Use the formula to find por of Y, Y2: $f_{1,y_{2}}(y_{1},y_{2}) = f_{x_{1},x_{2}}(y_{1},y_{2}) , g_{2}'(y_{1},y_{2})]]]$ IV, U to planed (1) $= \frac{1}{\Gamma(x_1) \Gamma(x_2)} \frac{(y_1 (y_2))^{\beta-1}}{(y_1 (y_2))^{\beta-1}} e^{-y_1 y_2 - y_1 (y_2)} |-y_1| + \frac{1}{1 + 1} e^{-y_1 y_2 - y_1} |-y_2| |-y_1| + \frac{1}{1 + 1} e^{-y_1 y_2 - y_1} |-y_2| |$ V = (N = V = V = V $= \frac{1}{I_{(r)} I_{(B)}} \frac{y_{1}^{\alpha+\beta-1} y_{2}^{\alpha-1} (1-y_{2})}{y_{2}^{\alpha-1} (1-y_{2})} e^{-y_{1}} (1-y_{1}) e^{-y_{1}} (1-y_{2}) e^{-y$ 0 < 32 < $\int_{1}^{\infty} \int_{2}^{\infty} \frac{1}{\pi \eta} \int_{1}^{\infty} \frac{1}{\eta} \int_{1}^{\infty} \frac{1}{\eta$ is si any e the view by half at alware all all (P) TT (win is . (muse) + . (win) 10 (F+1)1-9 P $\frac{(y'q)}{(x_1, x_2)} = \frac{1}{\sum_{i=1}^{n}} \frac{x_i^{n+1} x_i^{n+1}}{x_i^{n} x_i} \frac{e^{-X_i - X_i}}{e^{-X_i - X_i}}$ $X = \frac{1}{12} (x_1 x_2) = \frac{1$ as the assistant as the as a the as 12 invose transformation: Te XI + X - XI + XI + XI + XI + XI From Step(1): $\chi_1 \in \mathcal{F}_{2,2}^{1}$ $X_2 \in \mathcal{F}_{1}(\mathcal{F}_{2})$ LE-UN- (LEVE) E SELE (LEVE) "P " 11-= (2-V, 2- 22- 12- 22- 6) Kholoud Basalim 5) Kholoud Basalim

Q1:Let X_1, X_2, X_3, X_4, X_5 be a random sample of size 5 from a geometric distribution with $p = \frac{1}{3}$. (a) Find the Moment-generating function (MGF) of $Y = X_1 + X_2 + X_3 + X_4 + X_5$. (b) How is Y distributed?

Q2:Let X_1, X_2, X_3 denote a random sample of size 3 from a gamma distribution with $\alpha = 7$ and $\beta = 5$.

(a) Find the MGF of $Y = X_1 + X_2 + X_3$. (b) How is Y distributed?

Q3: Let $W = X_1 + X_2 + \cdots + X_h$, a sum of h mutually independent and identically distributed exponential random variables with parameter θ . Show that W has a gamma distribution with parameters $\alpha = h$ and $\beta = \theta$, respectively.

Q4: Let X_1, X_2, \dots, X_{10} be a random sample of size n=10 from exponential distribution with parameter $\theta = 2$, $X_i \sim \text{Exp}(\theta = 2)$.

- (a) Find the MGF of $Y = \sum_{i=1}^{10} X_i$.
- **(b)** What is the pdf of Y?

Q5:Let X_1, X_2, X_3 be mutually independent random variables with Poisson distributions having means 2, 1,and 4, respectively. (a) Find the MGF of the sum $Y = X_1 + X_2 + X_3$.

(b) How is Y distributed?

Q6:Generalize **Q5** by showing that the sum of n independent Poisson random variables with respective means $\mu 1$, $\mu 2$,..., μ n is Poisson with mean $\mu_1 + \mu_2 + \cdots + \mu_n$ **H.W**

Markov's inequality If X is a random variable that takes only nonnegative values, then, for any value a > 0, $P\{X \ge a\} \le \frac{E[X]}{a}$

Q7: Let X_1, X_2, \dots, X_{20} be independent Poisson random variables with mean 1.

Use the Markov inequality to obtain a bound on $P(\sum_{i=0}^{20} X_i \ge 15)$.

Q8: Let X be a Poisson random variable with mean 20. Use the Markov inequality to obtain a bound on $P(X \ge 26)$. **H.W**

Q9: Suppose that it is known that the number of items produced in factory during a week is a random variable with mean 50. <u>Give an upper bound on the probability</u> that this week's production will be more than or equal 75 ?

	Probability mass function, $p(x)$	Moment generating function, $M(t)$	Mean	Variance
Binomial with parameters n, p ; $0 \le p \le 1$	$\binom{n}{x} p^x (1-p)^{n-x}$ $x = 0, 1, \dots, n$	$(pe^t + 1 - p)^n$	np	np(1-p)
Poisson with parameter $\lambda > 0$	$e^{-\lambda} \frac{\lambda^x}{x!}$	$\exp\{\lambda(e^t - 1)\}$	λ	λ
Geometric with parameter $0 \le p \le 1$	x = 0, 1, 2, $p(1 - p)^{x-1}$ x = 1, 2,	$\frac{pe^t}{1 - (1 - p)e^t}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Negative binomial with	$\binom{n-1}{r-1}p^r(1-p)^{n-r}$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
$parameters r, p; \\ 0 \le p \le 1$	$n=r, r+1,\ldots$			

	Probability mass function, $f(x)$	Moment generating function, $M(t)$	Mean	Variance
Uniform over (<i>a</i> , <i>b</i>)	$f(x) = \begin{cases} \frac{1}{b - a} & a < x < b\\ 0 & \text{otherwise} \end{cases}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$	$\frac{a+b}{2}$	$\frac{(b - a)^2}{12}$
Exponential with parameter $\lambda > 0$	$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$	$\frac{\lambda}{\lambda - t}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gamma with parameters $(s, \lambda), \lambda > 0$	$f(x) = \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{s-1}}{\Gamma(s)} & x \ge 0\\ 0 & x < 0 \end{cases}$	$\left(\frac{\lambda}{\lambda-t}\right)^s$	$\frac{s}{\lambda}$	$\frac{s}{\lambda^2}$
Normal with parameters (μ, σ^2)	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} - \infty < x < \infty$	$\exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$	μ	σ^2

- Exercises 8 -

Q1: X1, X2, ..., X5 ~ Geometric (P=====) a-moment-generating function of Y=X1+X2+X3+X4+X5. if $X \sim \text{Geometric}(p) \implies f_x(x) = p(1-p)^{1-x} x=1,2,...$ $M(t) = \frac{Pe^{t}}{1-(1-P)e^{t}}$ $M_{y}(t) = E[e^{tY}] = E[e^{t(x_{1}+x_{2}+x_{3}+x_{4}+x_{5})}]$ $= F[e^{tx_1 + tx_2 + tx_3 + tx_4 + tx_5}]$ $= E[e^{+x_1}] \cdot [-[e^{+x_2}] \cdot E[e^{+x_3}] \cdot E[e^{+x_4}] \cdot E[e^{+x_5}]$ $= M^{x_1}(t) \cdot M^{x_1}(t) \cdot M^{x_2}(t) \cdot M^{x_1}(t) \cdot M^{x_1}(t)$ = $\frac{Pe^{t}}{1-(1-p)e^{t}} \cdot \frac{Pe^{t}}{1-(1-p)e^{t}} \cdot \frac{Pe^{t}}{1-(1-p)e^{t}} \cdot \frac{Pe^{t}}{1-(1-p)e^{t}}$ $\frac{M(t)}{Y} = \left[\frac{Pe^{t}}{1 - (1 - p)e^{t}}\right]^{5} = \left[\frac{\frac{1}{3}e^{t}}{1 - (1 - \frac{1}{3})e^{t}}\right]^{5}$ $Y = X_1 + X_2 + X_3 + X_4 + X_5 \sim Negative Binomial (r=5, P=\frac{1}{3})$ Q2: X1, X2, X3 ~ Gamma (x=7, B=5) $X_1 \sim Exp(2.) \implies f(x), 2.$ if $X \sim Gamma (x=7, \beta=5) \implies f(x) = \frac{\beta^{\alpha} x^{\alpha-1} e^{-X\beta}}{\Gamma(x)}$ X $M(t) = \left(\frac{B}{B-t}\right)^{\alpha}$ - MGF of Y=X,+X2+X3: $M[t] = \left[\left[e^{tY} \right] = \left[\left[e^{t\left[x_1 + x_2 + x_3 \right]} \right] \right]$ $= F \left[e^{tx_1} e^{tx_2} e^{tx_3} \right]$ $= E[e^{tx_1}] \cdot E[e^{tx_2}] \cdot E[e^{tx_3}]$ $= \dot{M}(f) \cdot \dot{M}(f) \cdot \dot{M}(f)$ $= \left(\frac{5}{5-t}\right)^{\frac{1}{4}} \cdot \left(\frac{5}{5-t}\right)^{\frac{1}{4}} \cdot \left(\frac{5}{5-t}\right)^{\frac{1}{4}} = \left(\frac{5}{5-t}\right)^{\frac{1}{4}} = \left(\frac{5}{5-t}\right)^{\frac{2}{4}}$ $:: Y = X_1 + X_2 + X_3 \sim Gumma (a = 21, B = 5)$ Kholoud Basalim

$$Q_{5}: X_{1} \sim Poission(\lambda_{1}=2)$$

$$X_{2} \sim Poisson(\lambda_{2}=1)$$

$$X_{3} \sim Poisson(\lambda_{3}=4)$$
if $X \sim Poisson(\lambda) \implies f_{x}(x) = \frac{\lambda^{x} e^{-\lambda x}}{x_{1}}; x=0,1,2,...$

$$M(H) = e^{\lambda(e^{t}-1)}$$

 $- MGF of Y = X_{1} + X_{2} + X_{3}$ $M[H] = E[e^{HY}] = E[e^{Hx_{1}}] E[e^{Hx_{2}}]$ $= E[e^{Hx_{1}}] E[e^{Hx_{2}}] E[e^{Hx_{3}}]$ $= M[H] \cdot M[H] \cdot M[H]$ $= e^{2(e^{H-1})} \cdot e^{4(e^{H-1})} \cdot e^{4(e^{H-1})}$ $= e^{2(e^{H-1})} + 4(e^{H-1}) + 4(e^{H-1})$ $= e^{(e^{H-1})}[2 + 1 + 4]$ $= e^{4(e^{H-1})}$

 $:Y = X_{1+} X_{2} + X_{3} \sim Poisson (\lambda = 7)$: $f(y) = \frac{7^{y} e^{-7y}}{y!}, y = 0, b^{2}, \dots$

 $Q_{6}:$ if $x_{1} \sim Poisson(\mu_{1})$ $x_{2} \sim Poisson(\mu_{2})$ \vdots $x_{n} \sim Poisson(\mu_{n})$ $Y = X_{1} + X_{2} + \cdots + X_{n} \implies Y = \sum_{i=1}^{n} x_{i} \sim Poisson(\mu_{i} + \mu_{2} + \cdots + \mu_{n})$

3 Kholoud Basalim

markov's inequality:

 $Q_{1}: X_{1}, X_{2}, \dots X_{20} \text{ indep. Poiss en with mean = 1}$ $P\left(\sum_{\substack{x=1\\x=1}}^{20} X_{i} \ge 15\right) \leqslant \frac{E\left[\sum_{x=1}^{20} X_{i}\right]}{Q}$ $\leqslant \frac{20}{15}$ $\leqslant \frac{4}{3}$

 $X \sim \text{Poisson} (\lambda = 1)$ $Y = \sum_{i=1}^{n} X_i \sim \text{Poisson} (n\lambda)$ $\Rightarrow E[Y] = n\lambda = 2o(1) = 2o$

$$\frac{Q_8}{28} \times \alpha \text{ poisson } \{\lambda = 20\}$$

$$P(X \ge 26) \leq \frac{E[X]}{\alpha}$$

$$\leq \frac{20}{26} = 0.7692$$

 $\frac{Q_{q}}{X} = number of items that will be produced in a week.$ By Markov's inequality: $P(X \ge 75) \leqslant \frac{E[X]}{q} = \frac{20}{75} = \frac{2}{3}$

Chapter 4 • Chebyshev's inequality Probability inequalities • $\mathbb{P}(|X - \mathbb{E}(X)| \ge \alpha) \le \frac{V(X)}{\alpha^2}$ $\mathbb{P}(|X - \mathbb{E}(X)| \le \alpha) \ge 1 - \frac{V(X)}{\alpha^2}$ One-Sided Chebyshev $\mathbb{P}(X \ge \mu + \alpha) \le \frac{\sigma^2}{\alpha^2 + \sigma^2}$ $\mathbb{P}(X \le \mu - \alpha) \le \frac{\sigma^2}{\alpha^2 + \sigma^2}$

Q1: If X is a random variable with mean 33 and variance 16, <u>use Chebyshev's inequality</u> to find : (a) A lower bound for P(23 < X < 43). (b) An upper bound for $P(|X - 33| \ge 14)$.

Q2: If E(X) = 17 and $E(X^2) = 298$, use <u>Chebyshev's inequality</u> to determine (a) A lower bound for P(10 < X < 24). (b) An upper bound for $P(|X - 17| \ge 16)$.

Q3:Let X be a Poisson random variable with mean 20. Use the <u>Chebyshev inequality</u> to obtain an upper bound on $P(X \ge 26)$.

Q4: If the number of items produced in factory during a week is random variable with mean 100 and variance 400 ,use <u>Chebyshev inequality</u> compute **an upper bound** on the probability that this week's production will be **at least 120**. **H.W**

Q5: Let $Y_{(1)} < Y_{(2)} < Y_{(3)} < Y_{(4)} < Y_{(5)}$ be the order statistics of five independent observations from an exponential distribution that has a mean of $\theta = 3$.

(a) Find the pdf of the sample median $Y_{(3)}$.

(b) Compute the probability that $Y_{(4)}$ is less than 5.

(c) Determine $P(1 < Y_{(1)})$.

Q6:Let $Y_{(1)} < Y_{(2)} < \cdots ... < Y_{(19)}$ be the order statistics of n = 19 independent observations from the exponential distribution with mean θ . What is the **pdf of Y**₍₁₎? **H.W**

Q7: Consider a random sample of size n from a distribution with pdf $f(x) = \frac{1}{x^2}$ if $1 \le x < \infty$; zero otherwise.

(a) Find the pdf of the smallest order statistic, $Y_{(1)}$

(b) Find the pdf of the largest order statistic, $Y_{(n)}$

Q8:Let $Y_{(1)} < Y_{(2)} < Y_{(3)} < Y_{(4)} < Y_{(5)} < Y_{(6)}$ be the order statistics associated with n = 6 independent observations each from the distribution with probability density function:

$$f(x) = \frac{1}{2}x$$

for 0 < x < 2. What is the probability density function of the first, fourth, and sixth order statistics? H.W

Answer:

$$g_1(y) = 3y \left(1 - rac{y^2}{4}
ight)^5, \ 0 < y < 2, \qquad g_4(y) = rac{15}{32}y^7 \left(1 - rac{y^2}{4}
ight)^2, \ 0 < y < 2, \qquad g_6(y) = rac{3}{1024}y^{11}, \ 0 < y < 2,$$

STAT415 – Probability(2)

- Exercises 9 -

MEONA & AZO

$$Q_1: \mu = 33, \sigma^2 = 16$$

a-lower bound p(23 < x < 43) p(23 < x < 43) = p(23 - x < x - x < 43 - x) = p(23 - 33 < x - 33 < 43 - 33) = p(-10 < x - 33 < 10) $= p(|x - 33| \le 10)$

$$P(|X-33| ≤ |0) ≥ |- \frac{V(x)}{\alpha^2} = |-\frac{16}{10^2} = 0.8^{10}$$

b- upper bound $P(|X-33| ≥ |4|)$.
 $P(|X-33| ≥ |4|) ≤ \frac{V(x)}{\alpha^2} = \frac{16}{14^2} = 0.0816$

$$\leftarrow \left(P(|X - E(X)| \leq \alpha) > 1 - \frac{V(X)}{\alpha^2} \right)$$

Q: X- Poisson (A=20)

- Upper bound p[X>25]

 $P(|X-E(x)| \ge \alpha) \le \frac{V(x)}{2}$

$$Q_{z} : E(x) = 17 + E[x^{2}] = 298$$
a-lower bound $P(10 < x < 24)$.

$$P(10 < x < 24) = P(10 - 17 < x - 17 < 24 - 14)$$

$$= P(10 - 17 < x - 17 < 7)$$

$$= P(1x - 17 | < 7)$$

$$P(1x - 17 | < 7)$$

$$Q_{3}: X \sim \text{poissen} (\lambda = 20) \qquad \text{Mean} = \lambda = 20 \qquad \text{Variance} =$$

2) Kholoud Basalim

b-
$$P(Y_{(4)} < 5)$$

find $p \delta f Y_{(4)}$: $k=Y$ $n=5$
 $f_{(4)}(5) = n f(5) \binom{n-1}{k-1} F(5)^{k-1} (1-F(5))^{n-k}$
 $f_{(4)}(5) = 5 \pm e^{\frac{\pi}{3}} (\frac{5-1}{4-1}) (1-e^{-\frac{\pi}{3}})^{n-k} (1-(1-e^{\frac{\pi}{3}}))^{n-k}$
 $= \frac{2^{\circ}}{3^{\circ}} (e^{\frac{\pi}{3}})^{2} (1-e^{-\frac{\pi}{3}})^{3} , 5 > 5$
 $P(Y_{(4)} < 5) = \int^{5} f_{(4)}(5) dy$
 $= \int^{5} \frac{2^{\circ}}{3^{\circ}} (e^{\frac{\pi}{3}})^{2} (1-e^{-\frac{\pi}{3}})^{3} dy$
 $k = (-e^{\frac{\pi}{3}})^{2} (1-e^{-\frac{\pi}{3}})^{2} dy$
 $k = (-e^{\frac{\pi}{3}})^{2} dy$
 $k = (-e^{\frac{\pi}{3}})^{2} dy$

C-P(1< Yas) $[n_{1}^{(1)}] = n f(g) (1 - F(g))^{n-1}$ · 5. 301 . (0) ₹--- pb ₹-- e [= (1<0Y)9 another way to Solve .

3 Kholoud Basalim

c-
$$P(1 < Y_{01})$$

Find part of Y_{10} : (15)
 $f_{0}(y) = n f(y) (1 - F(y))^{n-1}$
 $= 5 \cdot \frac{1}{3} e^{\frac{1}{3}} \cdot (e^{\frac{1}{3}})^{n}$
 $= 5 \cdot \frac{1}{3} e^{\frac{1}{3}} \cdot (e^{\frac{1}{3}})^{n}$
 $= \frac{1}{3} (e^{\frac{1}{3}})^{5}$; $y > 0$
 $P(Y_{01} > 1) = \int_{0}^{\infty} \frac{1}{3} e^{\frac{1}{3}} dy = -e^{\frac{5}{3}} \int_{0}^{\infty} = 0 + e^{\frac{5}{3}} = e^{\frac{1}{3}} e^{\frac{1}{3$

(4) Kholoud Basalim

$$\begin{split} & \underbrace{Q_{6}}^{\circ} \text{ pall of } Y_{0}^{\circ}; & n : 19 \\ & f_{(y)} = n : f_{(y)} (1 - F(y))^{n-1} & \text{op, dis}; \quad f_{(y)} : \frac{1}{6} e^{\frac{\pi}{3}} , 3 > 0 \\ & = 19 : \frac{1}{6} e^{\frac{\pi}{3}} e^{\frac{\pi}{3}} (e^{\frac{\pi}{3}})^{12} ; 3 > 0 \\ \end{split}$$

$$\begin{aligned} & \underbrace{Q_{1}}^{\circ} : f_{(x)} : \frac{1}{x^{2}} ; 1 & (x < \infty) \\ & F_{(y)} : 1 - e^{-\frac{\pi}{3}} & y > 0 \end{aligned}$$

$$\begin{aligned} & \underbrace{Q_{1}}^{\circ} : f_{(x)} : \frac{1}{x^{2}} ; 1 & (x < \infty) \\ & F_{(y)} : \frac{1}{6} e^{\frac{\pi}{3}} (e^{\frac{\pi}{3}})^{12} ; y > 0 \end{aligned}$$

$$\begin{aligned} & \underbrace{Q_{1}}^{\circ} : f_{(x)} : \frac{1}{x^{2}} ; 1 & (x < \infty) \\ & F_{(y)} : \frac{1}{x^{2}} ; 1 & (x < \infty) \\ & F_{(y)} : \frac{1}{y^{2}} : 1 & (x < \infty) \\ & F_{(y)} : \frac{1}{y^{2}} : f_{(x)} : \frac{1}{y^{2}} & \frac{$$

Yn

