IE-352

Section 1, CRN: 48700/1/2
Section 2, CRN: 48706/7/8
Second Semester 1437-38 H (Spring-2017) - 4(4,1,2)
"MANUFACTURING PROCESSES - 2"
Wednesday, March 22, 2017 (23/06/1438H)
Exercise: Cutting Forces and Power - 2

Name:	Student Number:
	4

A shaper tool making orthogonal cutting, has a (10) degrees rake angle. The feed rate $=0.2 \mathrm{~mm} / \mathrm{rev}$, the depth of cut is 2 mm . The cutting speed is 100 $\mathrm{m} / \mathrm{min}$. The main cutting force is 3600 N and the feed (thrust) force is 2400 N . The shear angle is (35) degrees.
i. Draw the Merchant diagram
ii. Calculate,
(a) the coefficient of friction.
(b) the shear stresses on the shear plane
(c) the normal stress on the rake face
(d) the friction power
(e) the shearing power
(f) the machining power the specific cutting energy

A shaper tool making orthogonal cutting, has a (10) degrees rake angle. The feed rate= 0.2 $\mathrm{mm} / \mathrm{rev}$, the depth of cut is 2 mm . The cutting speed is $100 \mathrm{~m} / \mathrm{min}$. The main cutting force is 3600 N and the feed (thrust) force is 2400 N . The shear angle is (35) degrees.
i. Draw the Merchant diagram

Note, the word "draw" implies that this must be done to scale (suggestion, use scale of $2 \mathrm{~cm}: 1,000 \mathrm{~N}$). The lengths of the forces in the diagram should be used to verify the actual values of the forces.

ii. Calculate,
(a) the coefficient of friction.
$\tan (\beta-\alpha)=\frac{F_{t}}{F_{c}}=\frac{2400 N}{3600 N}=0.6667$
$\beta-10^{\circ}=\tan ^{-1} 0.6667=33.69$
$\beta=10+33.69=43.69^{\circ}$
$\boldsymbol{\mu}=\tan \beta=\tan 43.69^{\circ}=\mathbf{0 . 9 6}$
(b) the shear stresses on the shear plane
$\tau_{s}=\frac{F_{s} \sin \varnothing}{t_{0} w}$
$F_{s}=F_{c} \cos \emptyset-F_{t} \sin \emptyset$
$=(3600)(\cos 35)-(2400)(\sin 35)=1572.36 N$
$\boldsymbol{\tau}_{\boldsymbol{s}}=\frac{F_{s} \sin \emptyset}{t_{0} w}=\frac{(1572.36 \mathrm{~N})(\sin 35)}{(2 \mathrm{~mm})(0.2 \mathrm{~mm})}=\mathbf{2 2 5 5} \frac{\mathrm{N}}{\mathrm{mm}^{\mathbf{2}}}$
(c) the normal stress on the rake face
$\sigma=\frac{N}{t_{c} w}$
We need to find both N and t_{c}
$\frac{t_{0}}{t_{c}}=\frac{\sin \emptyset}{\cos (\varnothing-\alpha)}$
$t_{c}=\frac{\cos (\emptyset-\alpha)}{\sin \emptyset} t_{0}=\frac{\cos \left(35^{\circ}-10^{\circ}\right)}{\sin 35^{\circ}}(2 \mathrm{~mm})=3.160 \mathrm{~mm}$
Now, consider the R-N-F triangle:
$\begin{aligned} & N=R \cos \beta=\sqrt{F_{c}{ }^{2}+{F_{t}}^{2}} * \cos \beta=\sqrt{3600^{2}+2400^{2}} * \cos 43.69^{\circ} \\ &=4326.66 * 0.7231=3128.55 \mathrm{~N} \\ & \boldsymbol{\sigma}=\frac{N}{t_{c} w}=\frac{3128.55 \mathrm{~N}}{(3.160 \mathrm{~mm})(0.2 \mathrm{~mm})}=4950 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}\end{aligned}$
(d) the friction power

Power for friction $=U_{f}=F V_{c}$
We need to find both F and V_{c}
Consider again the R-N-F triangle:
$F=R \sin \beta=4326.66 * \sin 43.69^{\circ}=4326.66 * 0.6908=2988.67 N$
$\frac{V}{\cos (\emptyset-\alpha)}=\frac{V_{c}}{\sin \emptyset}$
$V_{c}=\frac{\sin \emptyset}{\cos (\emptyset-\alpha)} V=\frac{\sin 35^{\circ}}{\cos \left(35^{\circ}-10^{\circ}\right)}(100 \mathrm{~m} / \mathrm{min})=63.29 \mathrm{~m} / \mathrm{min}$
$\boldsymbol{U}_{\boldsymbol{f}}=F V_{c}=(2988.67 \mathrm{~N})(63.29 \mathrm{~m} / \mathrm{min})=189,145 \mathrm{~N} \cdot \frac{\mathrm{~m}}{\min }=3.15 \mathrm{~kW}$
(e) the shearing power

Power for shearing $=U_{S}=F_{S} V_{S}$
We have F_{S} and we need to find V_{S} :
$V_{s}=\frac{\cos \alpha}{\cos (\varnothing-\alpha)} V=\frac{\cos 10^{\circ}}{\cos \left(35^{\circ}-10^{\circ}\right)}(100 \mathrm{~m} / \mathrm{min})=108.66 \mathrm{~m} / \mathrm{min}$
$U_{S}=F_{S} V_{S}=(1572.36 \mathrm{~N})(108.66 \mathrm{~m} / \mathrm{min})=170,855 \mathrm{~N} \cdot \frac{\mathrm{~m}}{\min }=2.85 \boldsymbol{k W}$
(f) the machining power

Machining power $=\boldsymbol{U}_{\boldsymbol{t}}=F_{c} V=(3600 \mathrm{~N})(100 \mathrm{~m} / \mathrm{min})$

$$
=360,000 \mathrm{~N} \cdot \frac{\mathrm{~m}}{\min }=6.00 \mathrm{~kW}
$$

Check Answer:

$$
\begin{aligned}
& U_{t}=U_{f}+U_{s}=3.15 \mathrm{~kW}+2.85 \mathrm{~kW}=6.00 \mathrm{~kW} \\
& \\
& \begin{aligned}
&(\mathrm{g}) \text { the specific cutting energy } \\
& \boldsymbol{u}_{t}=\frac{U_{t}}{w t_{0} V}=\frac{6.00 \mathrm{~kW}}{(2 \mathrm{~mm})(0.2 \mathrm{~mm})(100 \mathrm{~m} / \mathrm{min})} \\
&=\frac{6,000 \mathrm{~W}}{(2 \mathrm{~mm})(0.2 \mathrm{~mm})(100 \mathrm{~m} / \mathrm{min})}\left(\frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}\right)(60 \mathrm{~s} / \text { min }) \\
&=9.0 \mathbf{W} \cdot \mathbf{s} / \mathrm{mm}^{3}
\end{aligned}
\end{aligned}
$$

Note, compare this to the table showing specific energy requirements for different materials.

