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Abstract—Technical debt refers to incomplete or temporary
workarounds that allow us to speed software development in
the short term at the cost of paying a higher price later on.
Recently, studies have shown that technical debt can be detected
from source code comments, referred to as self-admitted technical
debt. Researchers have examined the detection, classification and
removal of self-admitted technical debt. However, to date there
is no empirical evidence on the impact of self-admitted technical
debt on software quality.

Therefore, in this paper, we examine the relation between self-
admitted technical debt and software quality by investigating
whether (i) files with self-admitted technical debt have more
defects compared to files without self-admitted technical debt, (ii)
whether self-admitted technical debt changes introduce future
defects, and (iii) whether self-admitted technical debt-related
changes tend to be more difficult. We measured the difficulty
of a change using well-known measures proposed in prior work
such as the amount of churn, the number of files, the number
of modified modules in a change, as well as the entropy of
a change. An empirical study using five open source projects,
namely Hadoop, Chromium, Cassandra, Spark and Tomcat,
showed that: i) there is no clear trend when it comes to defects
and self-admitted technical debt, although the defectiveness of the
technical debt files increases after the introduction of technical
debt, ii) self-admitted technical debt changes induce less future
defects than none technical debt changes, however, iii) self-
admitted technical debt changes are more difficult to perform,
i.e., they are more complex. Our study indicates that although
technical debt may have negative effects, its impact is not only
related to defects, rather making the system more difficult to
change in the future.

I. INTRODUCTION

Software companies and organizations have a common goal

while developing software projects - to deliver high-quality,

useful software in a timely manner. However, in most practical

settings developers and development companies are rushed

to meet deadlines, rushing them to release. Such situations

are all too common and in many cases force developers to

take shortcuts [1] [2]. Recently, the term technical debt was

coined to represent the phenomena of “doing something that is

beneficial in the short term but will incur a cost later on” [3].

Prior work showed that there are many different reasons why

practitioners take on technical debt. These reasons include: a

rush in delivering a software product given a tight schedule,

deadlines to incorporate with a partner product before release,

time-to-market pressure, as well as meeting customer needs in

a timely fashion [4].

More recently, a study by Potdar and Shihab [5] introduced

a new way to identify technical debt through source code

comments, referred to as self-admitted technical debt (SATD).

SATD is technical debt that developers themselves report

through source code comments. Prior work [6] showed that

SATD is common in software projects and can be used to

identify different types of technical debt (e.g., design, defect,

and requirement debt).

Intuition and general belief indicate that such rushed devel-

opment tasks (also known as technical debt) negatively impact

software maintenance and overall quality [1], [2], [7]–[9].

However, to the best of our knowledge, there is no empirical

study that examines the impact of SATD on software quality.

Such a study is critical since (i) it will help us confirm or refute

intuition and (ii) help us better understand how to manage

SATD.

Therefore, in this paper, we empirically investigate the re-

lation between SATD and software quality in five open-source

projects, namely Chromium, Hadoop, Spark, Cassandra, and

Tomcat. In particular, we examine whether (i) files with

SATD have more defects compared to files without SATD,

(ii) whether SATD changes introduce future defects, and (iii)

whether SATD-related changes tend to be more difficult. We

measured the difficulty of a change in terms of the amount of

churn, the number of files, the number of modified modules

in a change, as well as, entropy of a change. We perform

our study on five open-source projects, namely Chromium,

Hadoop, Spark, Cassandra, and Tomcat. Our findings show

that: i) there is no clear relationship between defects and

SATD. In some of the studied projects however, SATD files

have more bug-fixing changes, while in other projects, files

without SATD have more defects, ii) SATD changes are

associated with less future defects than none technical debt

changes, however, iii) SATD changes (i.e., changes touching

SATD files) are more difficult to perform. Our study indicates

that although technical debt may have negative effects, its

impact is not related to defects, rather its impact is in making

the system more difficult to change in the future.

The rest of the paper is organized as follows. Section II
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summaries the related work. In Section III, we describe our

research methodology. Section IV presents and discusses the

results of our empirical evaluation, while Section V shows

some threats to validity related to our study. Finally, Section

VI concludes our paper.

II. RELATED WORK

Since our work focuses on SATD, which analyzes comments

to detect technical debt, we discuss the work related to three

main topics: (i) source code comments, (ii) technical debt, and

(iii) software quality.

A. Research Leveraging Source Code Comments

A number of studies examined the usefulness/quality of

comments and showed that comments are valuable for pro-

gram understanding and software maintenance [10]–[12]. For

example, Storey et al. [13] explored how task annotations

in source code help developers manage personal and team

tasks. Takang et al. [10] empirically investigated the role

of comments and identifiers on source code understanding.

Their main finding showed that commented programs are more

understandable than non-commented programs. Khamis et al.
[14] assessed the quality of source code documentation based

on the analysis of the quality of language and consistency

between source code and its comments. Tan et al. proposed

several approaches to identify inconsistencies between code

and comments. The first called, @iComment, detects lock-

and call-related inconsistencies [11]. The second approach,

@aComment, detects synchronization inconsistencies related

to interrupt context [15]. A third approach, @tComment,

automatically infers properties form Javadoc related to null

values and exceptions; it performs test case generation by

considering violations of the inferred properties [16].

Other studies examined the co-evolution and reasons for

comment updates. Fluri et al. [17] studied the co-evolution of

source code and their associated comments and found that 97%

of the comment changes are consistently co-changed. Malik

et al. [18] performed a large empirical study to understand

the rationale for updating comments along three dimensions:

characteristics of a modified function, characteristics of the

change, as well as the time and code ownership. Their findings

showed that the most relevant attributes associated with com-

ment updates are the percentage of changed call dependencies

and control statements, the age of the modified function and

the number of co-changed functions which depend on it. De

Lucia et al. [19] proposed an approach to help developers

maintain source code identifiers and consistent comments with

high-level artifacts. The main results of their study, based on

controlled experiments, confirms the conjecture that providing

developers with similarity between source code and high-level

software artifacts helps to enhance the quality of comments

and identifiers.

Most relevant to our work is the recent work by Potdar

and Shihab [5] that uses source code comments to detect self-

admitted technical debt. Using the identified technical debt,

they studied how much SATD exists, the rationale for SATD,

as well as the likelihood of its removal after introduction.

Another relevant contribution to our study is the one by

Maldonado and Shihab [6], who have also leveraged source

code comments to detect and quantify different types of SATD.

They classified SATD into five types, i.e., design debt, defect

debt, documentation debt, requirement debt and test debt. They

found that the most common type is design debt, making up

between 42% to 84% of a total of 33K classified comments.

Our study builds on the prior work in [5], [6] since we use

the comment patterns they produced to detect SATD. How-

ever, different from their studies, we examine the relationship

between SATD and software quality.

B. Technical Debt

Other work focused on the identification and examination

of technical debt. It is important to note here that the tech-

nical debt discussed here is not SATD, rather it is technical

debt that is detected through source code analysis tools. For

example, Zazworka et al. [20] attempted to automatically

identify technical debt and then compared their automated

identification with human elicitation. The results of their study

outline potential benefits of developing tools and techniques

for the detection of technical debt. Also, Zazworka et al. [7]

investigated how design debt, in the form of god classes,

affects the software maintainability and correctness of software

products. Their study involved two industrial applications and

showed that god classes are changed more often and contain

more defects than non-god classes. Their findings suggests

that technical debt may negatively influence software quality.

Guo et al. [9] analyzed how and to what extent technical debt

affects software projects by tracking a single delayed task in a

software project throughout its lifecycle. As discussed earlier,

the work by Potdar and Shihab [5] is also related to our work,

however, its main difference compared to prior work is that it

focused on SATD.

Our work differs from past research by Zazworka et al. [7],

[20] since we focus on the relationship between SATD (and

not technical debt related to god files) and software quality.

However, we believe that our study complements prior studies

since it sheds light on the impact of the SATD and software

quality.

C. Software Quality

A plethora of prior work proposed techniques to improve

software quality. The majority of this work focused on un-

derstanding and predicting software quality issues (e.g. [21]).

Several studies examined the metrics that best indicate soft-

ware defects including design and code metrics [22], code

churn metrics [23], and process metrics [24], [25].

Other studies focused on change-level prediction of defects.

Sliwerski et al. suggested a technique called, SZZ, to automat-

ically locate fix-inducing changes by linking a version archive

to a bug database [26]. Kim et al. [27] used identifiers in

added and deleted source code and the words in change logs

to identify changes as defect-prone or not. Similarly, Kamei

[28] proposed a “Just-In-Time Quality Assurance” approach
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Fig. 1: Approach overview.

to identify, in real-time, risky software changes. The findings

of their study reveal that process metrics outperform product

metrics for the purpose of identifying risky changes.

Our study leverages the SZZ algorithm and some of the

techniques presented in the aforementioned change-level work

to study the defect-proneness of SATD-related commits. More-

over, our study complements existing works since it examines

relationship of SATD and software defects.

III. METHODOLOGY

The goal of our study is to investigate the relationship

between SATD and software quality. We measure software

quality in two ways. First, we use the traditional measure,

which is used in most prior studies, defects in a file and defect-

inducing changes [27]–[29]. In particular, we measure the

number of defects in SATD-related files and the percentage of

SATD-related changes that introduce future defects. Second,

since technical debt is meant to represent the phenomena of

taking a short term benefit at a cost of paying a higher price

later on, we also use the difficulty of the changes related to

SATD. In particular, we use the churn, the number of files, the

number of directories and the entropy of a change as a measure

of difficulty. We formalize our study with the following three

research questions:

• RQ1: Do files containing SATD have more defects

than files without SATD? Do the SATD files have more

defects after the introduction of the SATD?

• RQ2: Do SATD-related changes introduce future defects?

• RQ3: Are SATD-related changes more difficult than non-

SATD changes?

To address our research questions we followed the approach

shown in Figure 1, which consists of the following steps. First,

we mined the source code repositories of the studied projects

(step 1). Then, we extracted source code files at the level of

each analyzed project (step 2). Next, we parse the source code

and extract comments from the source code of the analyzed

systems (step 3). We apply the comment patterns proposed by

Potdar and Shihab [5] to identify SATD (step 4). Then, we

analyze the changes to quantify defects in files and use the

SZZ algorithm to determine defect-inducing changes (step 5).

A. Data Extraction

Our study involves the analysis of five large open-source

software systems, namely Chromium, Hadoop, Spark, Cas-

sandra, and Tomcat. We chose these projects because they

represent different domains, they are written in different pro-

gramming languages (i.e., Java, C, C++, Scala, Python, and

Javascript), and they have a large number of contributors.

More importantly, these projects are well-commented (since

our approach for the detection of SATD is based on the source

code comments). Moreover, they are made publicly available

to the research community and practitioners, and they have a

considerable development history.

Our analysis requires the source code as input. We down-

loaded the latest publicly available releases of the considered

systems, i.e., Chromium, Hadoop, Spark, Cassandra and Tom-

cat. Then, we filtered the data to extract the source code

at the level of each project release. Files not consisting of

source code (e.g., CSS, XML, JSON) were excluded from our

analysis as they do not contain source code comments, which

are crucial for our analysis.

Table I summarizes the main characteristics of these

projects. It reports the (i) release considered for each project,

(ii) date of the release, (iii) number of lines of code for each

release, (iv) number of comment lines, (v) number of source

code files, (vi) number of committers, as well as (vii) the

number of commits for each project release.

B. Scanning Code and Extracting Comments

After obtaining the source code of the software projects,

we extracted the comments from the source code files of each

studied project. To this aim, we developed a python-based

tool that identifies comments based on the use of regular

expressions. This tool also indicates the type of a comment

(i.e., single-line or block comments). In addition, the tool

shows, for each comment, the name of the file where the

comment appears, as well as the line number of the comment.

To ensure the accuracy of our tool, we use the Count Lines

of Code (CLOC) tool [30]. CLOC counts the total number of

lines of comments, which was equal to the number provided

by the tool that we developed.

In total, we found 879,142 comments for Chromium, 71,609

for Hadoop, 31,796 for Spark, 20,310 for Cassandra, and

39,024 for Tomcat. Of these comments the number of SATD

comments is, 18,435 comments for Chromium, 2,442 for

Hadoop, 1,205 for Spark, 550 for Cassandra, and 1,543 for

Tomcat. To enable easy processing of our data, we store all

of our processed data in a PostgreSQL database and query the

database to answer our RQs.

C. Identifying Self-Admitted Technical Debt

To perform our analysis, we need to identify SATD at two

levels: (i) file level and (ii) change level.

SATD files: To identify SATD, we followed the methodol-

ogy applied by Potdar and Shihab [5], which uses patterns

indicating the occurrence of SATD. In their work, Potdar and

Shihab [5] came up with a list of 62 different patterns that

indicate SATD. Therefore, in our approach, we determine the

comments that indicate SATD by searching if they contain

any of the 62 patterns that indicate SATD. These patterns are

extracted from several projects and some patterns appear more
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TABLE I: Characteristics of the studied projects.

Project Release Release Date # Lines of Code # Comment Lines # Files # Committers # Commits

Chromium 45 Jul 10, 2015 9,388,872 1,760,520 60,476 4,062 283,351

Hadoop 2.7.1 Jul 6, 2015 1,895,873 378,698 7,530 155 11,937

Spark 2.3 Sep 1, 2015 338,741 140,962 2,822 1,056 13,286

Cassandra 2.2.2 Oct 5, 2015 328,022 72,672 1,882 219 18,707

Tomcat 8.0.27 Oct 1, 2015 379,196 165,442 2,747 34 15,914

often than others. Examples of these patterns include “hack,
fixme, is problematic, this isn’t very solid, probably a bug,
hope everything will work, fix this crap”. The complete list of

the patterns considered in this study is made available online1.
Once we identify the comments patterns, we then abstract

up to determine the SATD files. Files containing SATD

comments are then labelled as SATD files, while files that do

not contain any of these SATD comments are referred to as

non-SATD files. We use these SATD files to answer RQ1.
SATD changes: To study the impact of SATD at the change

level, we need to identify SATD changes. To do so, we use

our SATD files to determine the SATD changes. We analyze

the changes and determine all the files that were touched by

that change. If one or more of the files touched by the change

is (are) SATD file(s), then we label that change as an SATD

change. If the change does not touch an SATD file, then we

label it as a non-SATD change. Table II shows the percentage

of SATD comments and files for each of the studied systems.

From the table, we see that SATD comments make up less

than 4% of the total comments and between 10.17 - 20.14%

of the files are SATD files.

TABLE II: Percentage of SATD of the analyzed projects.
Project SATD Comments (%) SATD files (%)
Chromium 2.09 10.43
Hadoop 3.41 18.59
Spark 3.79 20.14
Cassandra 2.70 16.01
Tomcat 3.95 10.17

D. Identifying Defects in SATD Files and SATD Changes
To determine whether a change fixes a defect, we search,

using regular expressions, in change logs from the Git Version

control system for co-occurrences of defect identifiers with

keywords like “fixed issue #ID”, “bug ID”, “fix”, “defect”,

“patch”, “crash”, “freeze”, “breaks”, “wrong”, “glitch”, “prop-

erly”, “proper”. Sliwersky et al. [29] showed that the use

of such key words in the change logs usually refers to the

correction of a mistake or failure. A similar approach was

applied to identify fault-fixing and fault-inducing changes

in prior works [27]–[29]. Once this step is performed, we

identify, for each defect ID, the corresponding defect report

from the corresponding issue tracking system, i.e., Bugzilla2

or JIRA3 and extract relevant information from each report.

1http://users.encs.concordia.ca/˜eshihab/data/ICSME2014/data.zip
2https://www.bugzilla.org
3https://www.atlassian.com/software/jira

Once we identify the SATD files and SATD changes, our

next step is to identify the defects in each. To do so, we

follow the approaches used in past research to determine the

number of defects in a file and to identify defect-inducing

changes [27]–[29].

Defects in files: In order to compare the defectiveness of

SATD and non-SATD files, we need to determine the number

of defects that exist in a file. To do so, we extract all the

changes that touched a file through the entire history of

the system. Then, we search for keywords in the change

logs that are indicative of defect fixing. A subset of these

words that we used involves: “fixed issue #ID”, “bug ID”,

“fix”, “defect”, “patch”, “crash”, “freeze”, “breaks”, “wrong”,

“glitch”, “proper”. In the case where a defect identification

is specified, we extract the defect report to make sure that

the defect corresponds to the system (i.e., product) we are

studying, since some communities (e.g., Apache) use the same

issue tracking system for multiple products. Second, we verify

whether the issue IDs identified in the change logs are true

positives. Once we determine the defect fixing changes, we

use these changes as an indication of the defect fixes that

occur in a file, i.e., we count the number of defects in a file

as the number of defect-fixing changes.

Defect-inducing changes: Similar to the process above, we

first determine whether a change fixes a defect. To do so,

we use regular expressions to search the change logs (i.e.,

commit messages) from the source code control versioning

system specific keywords that indicate a fix. In particular, we

search for the following keywords “fixed issue #ID”, “bug ID”,

“fix”, “defect”, “patch”, “crash”, “freeze”, “breaks”, “wrong”,

“glitch”, “proper”. We also search for the existence of defect

identification numbers in order to determine which defects, if

specified, the changes actually fix.

Once we identify the defect fixing changes, we map back

(using the blame command) to determine all the changes that

changed the fixed code in the past. Then, we determine the

defect-inducing change as the change that is closest and before

the defect report date. In essence, this tells us that this was

the last change before a defect showed up in the code. If no

defect report is specified in the fixing change, then similar to

prior work [28], we assume that the last change before the

fixing change was the change that introduced the defect. This

approach is often referred to as the SZZ [29] or approximate

(ASZZ) algorithm [28] and to-date is the state-of-the-art in

identifying defect-inducing changes.
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Fig. 2: Percentage of defect fixing changes for SATD and NSATD
files.

IV. CASE STUDY RESULTS

This section reports the results of our empirical study that

examines the relationship between self-admitted technical debt

and software quality. For each project, we provide the descrip-

tive statistics and statistical results, as well as a comparison

with the other considered projects.

In the following we present for each RQ, its motivation, the

approach followed to address it, as well as its findings.

RQ1: Do files containing SATD have more defects than files
without SATD? Do the SATD files have more defects after the
introduction of the SATD?

Motivation: Intuitively, technical debt has a negative impact

on software quality. Researchers examined technical debt

and showed that it negatively impacts software quality [7].

However, this study did not focus on SATD, which is prevalent

in software projects according to past research [5].

Empirically examining the impact of SATD on software

quality provides researchers and practitioners with a better

understanding of such SADT, warns them about its future

risks, and makes them aware about the obstacles or challenges

it can pose.

In addition to comparing the defect-proneness of SATD

and non-SATD files, we also compare the defect-proneness
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Fig. 3: Percentage of defect fixing changes for pre-SATD and post
SATD.

of SATD files before (pre-SATD) and after SATD (post-

SATD). This analysis provides us with a different view of

the defect-proneness of SATD files. In essence, it tells us if

the introduction of SATD relates to defects.

Approach: To address RQ1, we perform two types of analy-

ses. First, we compare files in terms of the defect-proneness of

files that contain SATD with files that do not contain SATD.

Second, for the SATD files, we compare their defect-proneness

before and after the SATD is introduced.

Comparing SATD and non-SATD files. To perform this

analysis, we follow the procedure outlined earlier in Section

III-C to identify SATD files. In a nutshell, we determine

files that contain SATD comments and label them as SATD

files. Files that do not contain any SATD are labeled as non-

SATD files. Once we determine these files, we determine the

percentage of defect-fixing changes in each (SATD and non-

SATD) file. We use the percenatages instead of raw numbers

since files can have a different number of changes, hence using

the percentage normalizes our data. To answer the first part of

RQ1, we plot the distribution of defects in each of the SATD

and non-SATD file sets and perform statistical tests to compare

their differences.

To compare the two sets, we use the Mann-Whitney [31]

test to determine if a statistical difference exists and Cliff’s
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TABLE III: Cliff’s Delta for SATD versus NSATD and POST versus
PRE fixing changes.

Project SATD vs. NSATD Post- SATD vs. Pre- SATD
Chromium 0.407 0.704
Hadoop -0.562 0.137
Spark -0.221 0.463
Cassandra -0.400 0.283
Tomcat 0.094 0.763

delta [32] to compute the effect-size. We use the Mann-

Whitney test instead of other statistical difference tests because

it is a non-parametric test that does not assume a normal

distribution (and as we will see later, our data is not normally

distributed). We consider the results of the Mann-Whitney test

to be statistically significant if the p-value is below p <= 0.05.

In addition, we computed the effect-size of the difference using

the Cliff’s delta (d) non-parametric effect size measure, which

measures how often values in a distribution are larger than the

values in a second distribution. Cliff’s d ranges in the interval

[−1, 1] and is considered small for 0.148 ≤ d < 0.33, medium

for 0.33 ≤ d < 0.474, and large for d ≥ 0.474.

Comparing files pre- and post- SATD. To compare SATD

files pre- and post- SATD, we determine all the changes that

occurred to a file and identify the change that introduced

the SATD. Then, we measure the percentage of defects (i.e.,
# of fixing changes

total # changes ) in the file before and after the intro-

duction of the SATD. We compare the percentage of defects

instead of the raw numbers since SATD could be introduced at

different times, i.e., we may not have the same total number of

changes before and after the SATD-introducing change. Once

we determine the percentage of defects in a file pre- and post-

SATD, we perform the same statistical test and effect size

measure, i.e., Mann-Whitney and Cliff’s delta.

Results - Defects in SATD and non-SATD files: Figure 2

shows boxplots of the percentage of defect fixing changes in

SATD and non-SATD files for the five projects. We observe

that in all cases, the non-SATD (NSATD) files have a slightly

higher percentage of defect fixing changes in Chromium,

Hadoop, Spark and Cassandra. However, in Tomcat, SATD

files have a slightly higher percentage of defects. For all the

projects, the p-values were < 0.05, indicating that the dif-

ference is statistically significant. However, when we closely

examine the Cliff’s delta values in Table III, we see a different

trend for Chromium. In Chromium and Tomcat, SATD files

often have higher defect percentages than non-SATD files and

the effect size is medium for Chromium and small for Tomcat.

On the other hand in Hadoop, Cassandra and Spark, SATD

files have lower defect percentages than non-SATD files and

this effect is large for Hadoop, medium for Cassandra and

small for Spark.

Our findings here show that there is no clear trend when

it comes to the percentage of defects in SATD vs. non-

SATD files. In some projects, SATD files have more bug-fixing

changes, while in other projects, non-SATD files have a higher

percentage of defects.

Results - Defects in pre- and post- SATD: Figure 3 shows the

boxplots for the percentage of defect-fixing changes in SATD
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Fig. 4: Percentage of defect inducing changes with SATD and
NSATD.

files, pre- and post- SATD. Not surprisingly, the percentage of

defect-fixing changes in all projects is higher for post-SATD.

Table III shows that the effect size Cliff’s delta values also

confirm our visual observations that there is more defect fixing

post- SATD compared to pre- SATD in the SATD files. For all

the projects except Hadoop and Cassandra, the Cliff’s delta is

large. For Hadoop and Cassandra the Cliff’s delta effect size

is small

This findings shows that although it is not always clear that

SATD files will have a higher percentage of defects compared

to non-SATD files, there is a clear trend that shows that once

the SATD is introduced, there is a higher percentage of defect-

fixing.

RQ2: Do SATD-related changes introduce future defects?

Motivation: After investigating the relationship between

SATD and non-SATD at the file level, we would like to see if

the SATD changes are more likely to introduce future defects.

In contrast to the file-level analysis which looks at files as a

whole, our analysis here is more fine grained since it looks at

the individual changes.

Studying the potential of SATD changes to introduce future

defects is important since it allows us to explore (i) how SATD

changes compare in terms of future introduction of defects to

non-SATD changes and (ii) how quickly the impact of SATD

on quality can be felt. For example, if SATD changes introduce

defects in the immediate next change, then this tells us that

the impact of SATD is felt very quickly. Our conjecture is

that SATD changes tend to be more complex and lead to the

introduction of defects.
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TABLE IV: Cliff’s Delta for the change difficulty measures across
the projects.

Project # Modified
Files

Entropy Churn # Modified
Directories

Chromium 0.418 0.418 0.386 0.353
Hadoop 0.602 0.501 0.768 0.572
Spark 0.663 0.645 0.825 0.668
Cassandra 0.796 0.764 0.898 0.827
Tomcat 0.456 0.419 0.750 0.390

Approach: To address RQ2, we applied the SZZ algo-

rithm [29] to find defect-inducing changes. Then, we deter-

mined which of the defect-inducing changes are also SATD

changes. We also count the number of defect-inducing changes

that are non-SATD.

Once the defect-inducing changes are identified, we divided

the data into two groups, i.e., defect-inducing changes that are

also SATD and defect-inducing changes that are non-SATD.

Results: Figure 4 shows that non-SATD changes have a higher

percentage of defect-inducing changes compared to non-SATD

changes. The figure shows that for Chromium for example,

approximately 10% of the SATD changes induce future defect.

On the other hand, approximately 27% of the non-SATD

changes in Chromium induce future defects. Our findings here

show that contrary to our conjecture, SATD changes have a

lower chance of inducing future defects

RQ3: Are SATD-related changes more difficult than non-SATD
changes?

Motivation: Thus far, our analysis has focused on the rela-

tionship between SATD and software defects. However, by

definition, technical debt mentions that it provides a tradeoff

where a short term benefit ends up costing more in the

future. Therefore, we would like to empirically examine this

tradeoff by examining whether changes after the introduction

of technical debt become more difficult to perform.

Answering this question will help us understand the impact

of SATD on future changes and provide us with a different

view on how SATD impacts a software project.

Approach: To answer this question, we classify the changes

into two groups, i.e., SATD and non- SATD changes. Then,

we compare the difficulty of each set of changes. To measure

the difficulty of a change we use four different measures: the

total number of modified lines (i.e., churn) in the change, the

number of modified directories, the number of modified files

and change entropy. The first three measures are motivated

by the earlier work on software decay by Eick et al. [33],

which uses these three measures to measure decay. The change

entropy measure is motivated by the work by Hassan [34],

which used change entropy as a measure of change complexity.

To measure the change churn, number of files and number

of directories, we use data from the change log directly.

The churn is given for each file touched by the change,

we simply aggregate the churn of the individual files to

determine the churn of the change. The list of files is

extacted from the change log to determine the number of

files and directories touched by the change. When measuring
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Fig. 5: Total number of lines modified per change (SATD vs.
NSATD).

the number of modified directories and files we refer to a

directory as ND and a file as NF. Hence, if a change involves

the modification of a file having the path, “net/base/reg-

istry controlled domains/effective tld names.cc“, then the di-

rectory is base/registry controlled domains, and the file is

effective tld names.cc.

To measure the entropy of the change, we use the change

complexity measure proposed by Hassan [34]. Entropy is

defined as: H(P ) = −∑n
k=1 (pk ∗ log2pk) where k is the

proportion filek is modified in a change and n is the number

of files in the change. Entropy measures the distribution of

a change across different files. Let us consider a change that

involves the modification of three different files named A, B,

and C and let us suppose the number of modified lines in files

A, B, and C is 30, 20, and 10 lines respectively. The Entropy

is equal to: (1.46 = −30
60 log2

30
60 − 20

60 log2
20
60 − 10

60 log2
10
60 ).

As in Hassan [34], the above Entropy formula has been

normalized by the maximum Entropy log2n to account for

differences in the number of files for different changes. The

higher the normalized entropy is, the more difficult the change

is.

Results: Figures 5, 6, 7, 8 shows that for all difficulty

measures, SATD changes have a higher value than non-

SATD changes. We also find that the difference between the
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Fig. 6: Total number of files modified per change (SATD vs.
NSATD).

SATD and non-SATD changes is statistically significant, with

a p − value < 0.05. Table IV shows the Cliff’s delta effect

size values for all studied projects. We observe that in all

projects and for all measures of difficulty the effect size is

either medium or large (Cf. Table IV), which indicates that

SATD changes are more difficult than non-SATD changes.

In summary, we conclude that SATD changes are more

difficult than changes non-SATD changes, when difficulty

is measured using churn, the number of modified files, the

number of modified directories and change entropy.

V. THREATS TO VALIDITY

Threats to internal validity concern any confounding fac-

tors that could have influenced our study results. To identify

SATD, we use source code comments. In some cases, develop-

ers may not add comments when they introduce technical debt.

Another threat is that developers may introduce technical debt,

remove it and not remove the comment related to that debt,

i.e., the code and comment change inconsistently. However,

Potdar and Shihab [5] examined this phenomena in Eclipse

and found that in the 97% of the cases code and comments

consistently change. To identify the SATD, we use the com-

ments provided by Potdar and Shihab [5]. There is a possibility

that these patterns do not detect all SATD. Additionally, given

that comments are written in natural language, Potdar and
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Fig. 7: Total number of modified directories per SATD and NSATD
change.

Shihab had to manually read and analyze them to determine

those that would indicate SATD. Manual analysis is prone to

subjectivity and errors and therefore we cannot guarantee that

all considered patterns may be perceived as an indicator of

SATD by other developers. To mitigate this threat, the first

author manually examined each comment that we detected

and verified whether it contains patterns from the 62 patterns

investigated in [5]. We performed this step, independently, for

each of the five studied projects. When identifying a change as

SATD change we consider a change to be SATD change when

it contains at least one SATD file. Another way is to classify

a change as an SATD change only when all files have SATD.

The reason we chose to do it this way is because sometimes

even SATD in one file can impact the rest of the change, e.g.,

cause many other files to be changed. When measuring the

percentage of defects for files after SATD was introduced, it is

difficult to observe if the difference was due to the introduction

of SATD or the natural evaluation of the files.

Threats to external validity concern the possibility that our

results may not generalize. To make our results as generaliz-

able as possible, we analyzed five large open-source systems,

i.e., Chromium, Hadoop, Spark, Cassandra, and Tomcat. Our

data comes from well-established, mature codebase of open-

source software projects with well-commented source code.
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Fig. 8: Distribution of the change across the SATD and NSATD files.

These projects belong to different domains, and they are

written in different programming languages.

Furthermore, we focused on SATD only, which means that

we do not cover all technical debt and therefore there may

be other technical debt that is not self-admitted. Studying all

technical debt is out of the scope of this work.

VI. CONCLUSION AND FUTURE WORK

Technical debt is intuitively known as a bad practice by

software companies and organizations. However, there is very

little empirical evidence on the extent to which technical debt

can impact software quality. Therefore, in this paper we per-

form an empirical study, using five large open-source projects,

to determine how technical debt relate to software quality. We

focus on self-admitted technical debt that refers to errors that

might be introduced due to intentional quick or temporary

fixes. As in [5], we identify such debt following a methodology

that leverages source code comments to distinguish it based

on the use of patterns indicating the existence self-admitted

technical debt.

We examined the relation between self-admitted technical

debt and software quality by investigating whether (i) files

with self-admitted technical debt have more defects compared

to files without self-admitted technical debt, (ii) whether self-

admitted technical debt changes introduce future defects, and

(iii) whether self-admitted technical debt-related changes tend

to be more difficult. We measured the difficulty of a change in

terms of the amount of churn, the number of files, the number

of modified modules in a change, as well as the entropy of a

change.

To perform our study, we analyzed five open-source

projects, namely Chromium, Hadoop, Spark, Cassandra, and

Tomcat. Our findings show that there is no clear trend when

it comes to defects and self-admitted technical debt. In some

of the studied projects, self-admitted technical debt files have

more bug-fixing changes, while in other projects, files without

it had more defects. We also found that self-admitted technical

debt changes are less associated with future defects than none

technical debt changes, however, we showed that self-admitted

technical debt changes are more difficult to perform. Our

study indicates that although technical debt may have negative

effects, its impact is not related to defects, rather making the

system more difficult to change in the future.

We bring empirical evidence on the fact that technical

debt may have some negative implications on the software

development process in particular by making it more complex.

Hence, practitioners need to manage it properly to avoid any

consequences. In the future, we plan to further study the nature

of the SATD files after they became defective.
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