

King Saud University Department of Mathematics 2nd Semester 1432-1433 H

MATH 244 (Linear Algebra) Final Exam

Duration: 3 Hours

Student's Name	Student's ID	Group No.	Lecturer's Name	

Question No.	Ι	II	III	IV	Total
Mark					

[I] A	A. Determine whether the following is True or False .		[7 Points]	
(1)	The matrix AA^T is symmetric, where A is an $n \times n$ matrix.	()	
(2)	If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is a linearly independent set of vectors in a vector space V , then $r > \dim(V)$.	()	
(3)	If $S = \{\mathbf{u}, \mathbf{u} + \mathbf{v}\}$, then $\mathbf{u} - \mathbf{v} \in Span(S)$.	()	
(4)	In the vector space $V = \mathbb{R}^+$ (the positive real numbers) together with the operations $\mathbf{u} + \mathbf{v} = \mathbf{u}\mathbf{v}$ and $k\mathbf{u} = \mathbf{u}^k$, the zero vector equals 1.	()	
(5)	If $(\mathbf{v})_S = (1,0,1)$ for the basis $S = \{(1,0,0), (2,2,0), (3,3,3)\}$ of \mathbf{R}^3 , then $\mathbf{v} = (4,3,3)$.	()	
(6)	If A is a 3×5 matrix, then $nullity(A)$ can be $2, 3, 4$ or 5 .	()	
(7)	$\{1+x,1-x,x^2\}$ is a basis for P_2 .	()	

[I] **B.** Choose the correct answer.

(1) If $A = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$, then A(adj(A)) is

(a) I_2

(b) $2I_2$

(c) $-4I_2$

(d) None of the previous

(2) The angle θ between $\mathbf{u} = (1,1)$ and $\mathbf{v} = (2,0)$ equals

(a) $\frac{\pi}{2}$

(b) $\frac{\pi}{3}$

(c) $\frac{\pi}{4}$

(d) None of the previous

(3) The standard matrix of a counterclockwise rotation on \mathbb{R}^3 about the positive x-axis through an angle θ is

- (a) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$ (b) $\begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$ (c) $\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (d) None of the previous

(4) If $\begin{vmatrix} a & b & c \\ d & e & f \\ a & h & i \end{vmatrix} = 4$, then $\begin{vmatrix} 2g & d & a \\ 2h & e & b \\ 2i & f & c \end{vmatrix}$ equals

(a) - 8

(b) 4

(c) 8

(d) None of the previous

(5) The eigenvalues of A^3 where $A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & -1 & -8 \\ 0 & 0 & 2 \end{bmatrix}$ are

(a)1,-1,8

(b) 1,-1,2

(c) 1,4

(d) None of the previous

(6) If $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ is given by $T_1(x,y) = (2x+y,x+3y)$ and $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ is given by $T_2(x,y) = (x,-y)$, then $[T_2 \circ T_1]$ is

- (a) $\begin{bmatrix} 2 & -1 \\ 1 & -3 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 1 \\ -1 & -3 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$
- (d) None of the previous

- (7) Let $T_A: \mathbb{R}^3 \to \mathbb{R}^3$ be the multiplication by $A = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 0 & 3 \\ 2 & -2 & 4 \end{bmatrix}$. For $\mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $T_A(5e_3)$ equals
 - (a) $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

- $\mathbf{(b)} \left[\begin{array}{c} 10 \\ 15 \\ 20 \end{array} \right]$
- (c) $\begin{bmatrix} 250 \\ 375 \\ 500 \end{bmatrix}$
- (d) None of the previous
- (8) If $S = \{(1, -1, 0, 1), (-1, 1, 1, 0), (2, -2, 1, 3)\}$ and W = Span(S), then $\dim(W)$ is
 - **(a)** 1

(b) 2

(c) 3

- (d) None of the previous
- (9) If A is a 5×7 matrix with rank(A) = 4, then the number of parameters in the general solution of the linear system $A\mathbf{x} = \mathbf{0}$ is
 - (a) 3

(b) 4

(c) 5

(d) None of the previous

[II] A. Let $\mathbf{v}_1 = (1, 0, 1, 1), \mathbf{v}_2 = (-3, 3, 7, 1), \mathbf{v}_3 = (-1, 3, 9, 3)$ and $\mathbf{v}_4 = (-5, 3, 5, -1)$ be vectors in \mathbb{R}^4 . [8 Points]

- (i) Find a subset of $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ that forms a basis for the space W = Span(S)
- (ii) Express each vector not in the basis as a linear combination of the basis vectors.

[II] B. Suppose that $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ is a matrix transformation with standard matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$. [8 Points]

- (i) Show that T_A is one-to-one.
- (ii) Find $\left[T_A^{-1}\right]$
- (iii) Evaluate $T_A^{-1}(1,2,3)$

[III] A. Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
.

[5 Points]

- (i) Compute the eigenvalues of A.
- (ii) Determine whether A is invertible or not.

[III] **B.** Suppose that
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
.

[6 Points]

- (i) Show that $\lambda = 2$ is an eigenvalue of A.
- (ii) Find a basis for the eigenspace of A corresponding to $\lambda = 2$.

[V] A. For $A = \begin{bmatrix} -1 & 1 & -2 & -1 \\ 1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 1 \end{bmatrix}$, evaluate

[5 Points]

- (i) rank(A)
- (ii) $nullity(A^T)$

[V] B.(BONUS) [5 Points]

(i) Show that $W = \{A \in M_{nn} : nullity(A) = 0\}$ is not a subspace of M_{nn} .

(ii) Find the conditions that must be satisfied by b_1, b_2, b_3 and b_4 for the following overdetermined system to be consistent.

$$x_1 + x_2 = b_1$$

$$x_1 + 2x_2 = b_2$$

$$x_1 - x_2 = b_3$$

$$2x_1 + 4x_2 = b_4$$