MATH 244 (Linear Algebra) Second Midterm Exam

Duration: 105 Minutes

Student's Name	Student's ID	Group No.	Lecturer's Name	

Question No.	I	II	III	IV	Total
Mark					

[I] Determine whether the following is **True** or **False**. [3 Points]

(1) If A and B are
$$n \times n$$
 matrices, then $\det(A - B) = \det(A) - \det(B)$.

(2) If
$$C$$
 and D are 2×2 matrices with $\det(C) = 5$ and $\det(D) = -1$, then $\det(4DC) = -80$.

(3) If
$$\mathbf{u} = (4,3)$$
 and $\mathbf{v} = (2,-5)$, then $|\mathbf{u} \cdot \mathbf{v}| \le 2\|\mathbf{u}\|$.

(4) The set
$$\{(1,2,-1),(-1,2,3),(-1,1,1)\}$$
 is orthogonal. ()

(5)
$$S = \{(2,3,1), (1,0,1), (0,4,1)\} \text{ spans } \mathbb{R}^3.$$

(6) The set
$$\{(1,1),(3,5),(4,2)\}$$
 is linearly independent in \mathbb{R}^2 .

)

- [II] Choose the correct answer. [5 Points]
- (1) If $A^{-1} = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix}^T$, then adj(A) equals

 - (a) $7A^{-1}$ (b) $\frac{1}{7}A^{-1}$
- (c) $\begin{bmatrix} -1 & 3 & 1 \\ 2 & -6 & 5 \\ 2 & 1 & -2 \end{bmatrix}$
- (d) None of the previous

- (2) The angle θ between $\mathbf{u} = (1, -1, 0)$ and $\mathbf{v} = (1, 0, 0)$ satisfies
 - (a) $\cos \theta = 0$
- **(b)** $\cos \theta = \frac{1}{\sqrt{2}}$ **(c)** $\cos \theta = \frac{1}{2}$

(d) None of the previous

- (3) If $\|\mathbf{u}\| = 3$, $\|\mathbf{u} + \mathbf{w}\| = 6$ and the distance $d(\mathbf{u}, \mathbf{w}) = 2$. Then $\|\mathbf{w}\|$ equals
 - (a) 1

(b) 8

(c) $\sqrt{11}$

(d) None of the previous

- (4) The solution space of $\begin{bmatrix} 1 & 2 & 0 \\ 3 & 6 & 1 \\ -2 & -4 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ is
 - (a) The origin $\{0\}$
- (b) A line through the origin
- (c) A plane through the origin
- (d) None of the previous
- (5) Which of the following is a linear combination of $\mathbf{v}_1 = (1, 1, 2)$, $\mathbf{v}_2 = (1, 0, 1)$ and $\mathbf{v}_3 = (2, 1, 3)$?
 - (a) (3, 1, -1)
- **(b)** (2, 4, 6)

(c) (2,0,1)

(d) None of the previous

[III] [6 Points]

(a) Show that $\{A \in M_{22} : A = A^T\}$ is a subspace of M_{22} .

(b) **Prove** that $S = {\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3}$ is a basis for P_2 where $\mathbf{p}_1 = 3 + x$, $\mathbf{p}_2 = 2 - x + x^2$, $\mathbf{p}_3 = 1 - x^2$ and **Find** the coordinate vector $(\mathbf{q})_S$ for $\mathbf{q} = 7 - 2x - 3x^2$

[IV] [6 Points]

Let $V = \{(x,2) \in \mathbb{R}^2, x \neq 0\}$ with the following addition and scalar multiplication on $\mathbf{u} = (x,2) \in V$ and $\mathbf{v} = (y,2) \in V$

$$\mathbf{u} + \mathbf{v} = (xy, 2)$$
$$k\mathbf{u} = (kx, 2)$$

(a) Compute
$$(1,2) + (-3,2)$$
 and $4(-2,2)$

- (b) Find the object $\mathbf{0} \in V$ such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in V$
- (c) If $\mathbf{u} \in V$. Find the object $-\mathbf{u} \in V$ such that $-\mathbf{u} + \mathbf{u} = \mathbf{0}$
- (d) Show that V is not a vector space